In semiconductor uses, such as diodes and transistors, the forward voltage drop for Silicon (Si) is a little less than 0.7 volts, while the FVD for Germanium (Ge) is about 0.3 volts.
2-3v
for germanium it is 0.3 and for silicon it is 0.7
There is no exact substitute for a germanium diode, except another germanium diode. However if the only concern is to get a lower forward voltage drop than that of a silicon diode (0.7V), then a schottky barrier diode may be a suitable replacement as its forward voltage drop (<0.1V) is even lower than that of a germanium diode (0.2V).
The significant operational difference between a Si diode and a Ge diode is that Si diodes have a knee voltage of 0.7V needed to allow current flow and Ge diodes have an operational voltage of 0.3V to allow current flow.
silicon and germanium
cut in voltage *** for silicon is 0.7volts and that for germanium is 0.3volts.According to Millman and Taub, "Pulse, Digital and Switching Waveforms", McGraw-Hill 1965, the cutin (or offset, break-point or threshold) voltage for a silicon diode is 0.6, and 0.2 for germanium.Breakdown voltage is another thing entirely. It is the reverse voltage at which the junction will break down.
The knee voltage for silicon is approximately 0.7V, while for germanium it is around 0.3V. The knee voltage is the voltage at which a diode starts conducting significantly.
The difference in breakdown voltage between silicon (0.7V) and germanium (0.3V) is mainly due to their different band gap energies. Silicon has a larger band gap compared to germanium, resulting in a higher breakdown voltage. This means that silicon can withstand a higher voltage before breaking down compared to germanium.
A silicon diode has a voltage drop of approximately 0.7V, while a germanium diode has a voltage drop of approximately 0.3V. Though germanium diodes are better in the area of forward voltage drop, silicon diodes are cheaper to produce and have higher breakdown voltages and current capabilities.
Silicon has a larger band gap energy than germanium, resulting in a higher cut-in voltage for silicon diodes compared to germanium diodes. The larger band gap in silicon means that it requires more energy for electrons to be excited into the conduction band, resulting in a higher cut-in voltage.
The silicon diode (unless its a Schottky diode) conducts at approximately 0.6 volts. The germanium diode, however, conducts at a much lower voltage, typically 0.2 volts. This means that the germanium diode is better at small signal rectification applications, such as AM radio detectors, allowing a smaller tuner tank circuit.
Silicon transistors are preferred to germanium transistors because they exhibit higher thermal stability and are less prone to temperature variations. Silicon transistors also have a higher maximum operating temperature, improved frequency response, and are more reliable in terms of long-term performance. Additionally, silicon is more abundant and easier to work with in manufacturing processes compared to germanium.
Silicon = 0.7v : Germanium = 0.3v
A germanium diode has a lower forward voltage drop compared to a silicon diode, typically around 0.3V for germanium and 0.7V for silicon. Germanium diodes also have a higher reverse current leakage compared to silicon diodes.
Four reasons. First, it is a LOT cheaper and easier to get silicon. Germanium is a trace element in rocks. You need to mine and process lots of rock to get any germanium. Silicon is also known as sand--very easy to find. Second, germanium is heat sensitive. It's harder to solder a germanium device in than a silicon one because the heat can mess up the germanium. Germanium devices pretty much have to be soldered in by hand because you have to heat sink them, whereas silicon devices can be soldered in a soldering machine. Third, germanium's hazardous and silicon is generally not. People eat off glass plates, which are made from silicon. They do NOT eat from germanium plates, if they could even afford them. And fourth, germanium has a variable voltage drop--the higher the voltage, the greater the drop. If you pump 5000 volts into a silicon diode, you're going to get 4999.3v out the other side.
2-3v
Germanium is not used in integrated circuits. Silicon is.