A conditional loop will only continue to loop while the given condition is true:
while( i < 10 ) {
...
}
An unconditional loop either has no condition (a GOTO loop), or the condition is guaranteed to always evaluate to true:
while( true ) {
...
}
#include<iostream> #include<vector> #include<random> template<const size_t R, const size_t C> class Matrix { public: using row_type = int[C]; private: // attributes int m_data[R][C]; public: // construction/assignment Matrix (); Matrix (const Matrix& source); Matrix (Matrix&& source); Matrix& operator= (const Matrix<R,C>& source); Matrix& operator= (Matrix<R,C>&& source); ~Matrix () {} public: // accessors row_type& row (const size_t index) { return m_data[index]; } const row_type& row (const size_t index) const { return m_data[index]; } row_type& operator[] (const size_t index) { return m_data[index]; } const row_type& operator[] (const size_t index) const { return m_data[index]; } size_t size() const { return R * C; } size_t rows() const { return R; } size_t cols() const { return C; } public: // operations Matrix<R,C>& operator+= (const Matrix<R,C>&); Matrix<R,C>& operator-= (const Matrix<R,C>&); }; template<const size_t R, const size_t C> Matrix<R,C>::Matrix() { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = 0; } template<const size_t R, const size_t C> Matrix<R,C>::Matrix(const Matrix<R,C>& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = source.m_data[row][col]; } template<const size_t R, const size_t C> Matrix<R,C>::Matrix(Matrix<R,C>&& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = std::move (source.m_data[row][col]); } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator= (const Matrix<R,C>& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = source.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator= (Matrix<R,C>&& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = std::move (source.m_data[row][col]); return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator+= (const Matrix<R,C>& rhs) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] += rhs.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator-= (const Matrix<R,C>& rhs) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] -= rhs.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C> operator+ (const Matrix<R,C>& lhs, const Matrix<R,C>& rhs) { Matrix<R,C> sum (lhs); return sum += rhs; } template<const size_t R, const size_t C> Matrix<R,C> operator- (const Matrix<R,C>& lhs, const Matrix<R,C>& rhs) { Matrix<R,C> sub (lhs); return sub -= rhs; } template<const size_t R, const size_t C, const size_t R1, const size_t C1> Matrix<R,C1> operator* (const Matrix<R,C>& lhs, const Matrix<R1,C1>& rhs) { static_assert (C==R1, "Matrix dimension mismatch!"); Matrix<R,C1> mul; for (size_t x=0; x!=R; ++x) { for (size_t y=0; y!=C1; ++y) { int prod = 0; for (size_t z=0; z!=C; ++z) { prod += lhs[x][z] * rhs[z][y]; } mul[x][y] = prod; } } return mul; } template<const size_t R, const size_t C> std::ostream& operator<< (std::ostream& os, const Matrix<R,C>& m) { for (size_t row=0; row<R; ++row) { for (size_t col=0; col<C; ++col) { std::cout << m[row][col] << '\t'; } std::cout << std::endl; } return os; } int main() { std::default_random_engine generator; std::uniform_int_distribution<int> distribution (1,9); const size_t rows = 2; const size_t cols = 3; Matrix<rows, cols> a, b; for (size_t row=0; row<rows; ++row) { for (size_t col=0; col<cols; ++col) { a[row][col] = distribution (generator); b[row][col] = distribution (generator); } } std::cout << "Matrix a:\n\n" << a << '\n' << std::endl; std::cout << "Matrix b:\n\n" << b << '\n' << std::endl; std::cout << "Matrix a + b:\n\n" << a + b << '\n' << std::endl; std::cout << "Matrix a - b:\n\n" << a - b << '\n' << std::endl; Matrix<cols, rows> c; for (size_t row=0; row<rows; ++row) { for (size_t col=0; col<cols; ++col) { c[col][row] = distribution (generator); } } std::cout << "Matrix c:\n\n" << c << '\n' << std::endl; std::cout << "Matrix a * c:\n\n" << a * c << '\n' << std::endl; }
Ans. A series L R C in parallel with C' .
The R-C oscillator is also called a phase shift oscillator because the R-C filter creates a phase shift from input to output. The feedback portion of the oscillator (an amplifier) then serves to pump energy back into the filter.
Algorithm: transpose Input: a matrix M[x][y] Output: the transpose of M (a matrix of order y * x) allocate N[y][x] for r = 0 to x-1 // iterate over rows for c = 0 to y-1 // iterate over columns N[c][r] = M[r][c] next c next r return N
#include<iostream> #include<algorithm> #include<cassert> unsigned multiply_recursive (unsigned a, unsigned b) { if (!a !b) return 0; // Note: not(a) or not (b) if (a==1) return b; if (b==1) return a; return a + multiply_recursive (a, --b); } unsigned multiply_iterative (unsigned a, unsigned b) { int product = 0; int x = std::min (a, b); int y = std::max (b, a); while (x--) product += y; return product; } int main() { unsigned x, y; // Test all combinations with 0. x = multiply_recursive (0, 0); assert (x==0); x = multiply_iterative (0, 0); assert (x==0); x = multiply_recursive (0, 1); assert (x==0); x = multiply_iterative (0, 1); assert (x==0); x = multiply_recursive (1, 0); assert (x==0); x = multiply_iterative (1, 0); assert (x==0); // Test non-zero values with 1. x = multiply_recursive (1, 42); // inefficient: lowest value must be on right (fewer recursions). y = multiply_iterative (1, 42); assert (x==42 && y==42); x = multiply_recursive (42, 1); y = multiply_iterative (42, 1); assert (x==42 && y==42); // Test other non-zero values are commutative. x = multiply_recursive (24, 42); // inefficient: lowest value must be on right (fewer recursions). y = multiply_iterative (24, 42); assert (x==1008 && y==1008); x = multiply_recursive (42, 24); y = multiply_iterative (42, 24); assert (x==1008 && y==1008); }
that u r friends regardless no matter what happens
Geoffrey R. Harris has written: 'Loops and unoriented strings'
p = r - c r - c = p r - c - r = p - r -(-c) = -(p) c = -p
#include<stdio.h> #include<conio.h> void main() { int a[3][3],b[3][3],c[3][3],r,c; for(r=0;r<=3;r++) { for(c=0;c<3;c++) { printf("\n enter the value="); scanf("%d%d",&a[r][c],&b[r][c]); } } printf("\n first matrix=\n"); for(r=0;r<=3;r++) { for(c=0;c<3;c++) { printf("%d\t",a[r][c]); } printf("\n"); } printf("\n scond matrix=\n"); for(r=0;r<=3;r++) { for(c=0;c<3;c++) {printf("%d\t",b[r][c]); } printf("\n"); } printf("\n sum of given matrix=\n"); for(r=0;r<=3;r++) { for(c=0;c<3;c++) { c[r][c]=a[r][c]+b[r][c]; printf("%d\t",c[r][c]); } printf("\n"); } getch(); }
Nice words that start with R are:radiantraspberryrationalravishingrealisticreasonablerefinedreliableremarkableremembrancerespectfulresplendentresponsiblerhymeribbonsricerichesrighteousrobustromanticromprosemaryrosyruby
If the array consists of r rows and c column, and the total number of cells in the array are n = r*c, then r*c = n and c*r = n so that r*c = c*r : which is commutativity of multiplication.
Presumably C means circumference and R means radius? If C = 2*pi*R Then R = C divided by 2*pi
If: C = 2r Then: r = C/2
b/c they r!!!!!! b/c they r!!!!!! b/c they r!!!!!!
ab[C]defghijklmnopqrstuvwxyz. Exuse me but i think it is [R]. It is [C] or [R]. R is from th[r]ee. C is from [1 A] [2 B] [3 C]. ?
presumably, r=27?
The circumference of a circle C is 2Pixr So solving for r we have C/2Pi=r