answersLogoWhite

0

The axis about which the body is being rotated and the geometry of the body are important.

The further away material (in terms of area) is from the centroid of the body the higher the moment of inertia will be, which is why an I-beam is good in bending.

If it's the mass moment of inertia which is used in dynamics for Euler's angular momentum equation. Then the mass of the body is important. The further away mass is from the axis of rotation the greater the mass moment of inertia will be.

This is why when a figure skater pulls their arms into her body during a spin she begins to spin faster. The mass of their arms is now closer to their axis of rotation lowering their mass moment of inertia and decreasing their resistance to rotation.

User Avatar

Wiki User

13y ago

What else can I help you with?

Related Questions

What is the domensions for moment of inertia?

Dimensional formula of moment of inertia = [ML2T0 ]


What is meant by moment of inertia in Induction motors?

The second moment of a force is called as moment of inertia.


What is rotational inertia?

Rotational inertia is sometimes called spin. It involves the movement of a mass around an axis. This moving mass will have some measure of kinetic energy that is due to the fact that it is spinning. The variables are the shape and the mass of the object, the way the mass is distributed within the object, the speed of its rotation, and the location of the axis of spin through the object. The moment of inertia might also be called angular mass, mass moment of inertia, rotational inertia, or polar moment of inertia of mass. Use the link below for more information.


What is the derivative of the moment of inertia with respect to the variable in question?

The derivative of the moment of inertia with respect to the variable in question is called the rate of change of moment of inertia.


What is the unit for a polar moment of inertia?

Moment of inertia has unit kg m2


What is the formula for calculating the moment of inertia of a hoop?

The formula for calculating the moment of inertia of a hoop is I MR2, where I is the moment of inertia, M is the mass of the hoop, and R is the radius of the hoop.


Mass moment of inertia of a flywheel?

define moment of inertia§ I is the moment of inertia of the mass about the center of rotation. The moment of inertia is the measure of resistance to torque applied on a spinning object (i.e. the higher the moment of inertia, the slower it will spin after being applied a given force).


How do you determine the moment of inertia?

The moment of inertia of an object depends on its mass distribution and shape. For simple shapes, such as a point mass or a solid cylinder, mathematical formulas can be used to calculate the moment of inertia. For complex shapes, numerical methods or integration techniques may be necessary to determine the moment of inertia.


What is the moment of inertia for a hoop?

The moment of inertia for a hoop is equal to its mass multiplied by the square of its radius.


What is the difference between mass moment of inertia and area moment of inertia?

Mass moment of inertia measures an object's resistance to rotational motion due to its mass distribution, while area moment of inertia measures an object's resistance to bending due to its shape and cross-sectional area. Mass moment of inertia depends on both the mass and its distribution, while area moment of inertia depends on the shape and how the material is distributed in the cross-section.


Can moment of inertia be negative?

No, moment of inertia cannot be negative as it is a physical quantity that represents an object's resistance to changes in its rotation. Negative values for moment of inertia do not have physical meaning.


What is the equation for calculating the polar moment of inertia of a cylinder?

The equation for calculating the polar moment of inertia of a cylinder is I ( r4) / 2, where I is the polar moment of inertia and r is the radius of the cylinder.