If you stretch a wire, it would become longer, and therefore thinner. The cross sectional area will decrease and so the resistance will increase.
in the real world, if it's stranded wire, the strands will likely break. Solid wire would not stretch evenly, and in either case insulation will tear, so I wouldn't recommend stretching a wire.
increases
The resistance can be changed in following two ways: 1.By change the length of the wire. 2.By changing the area of cross section of the wire.
Electric current as we usually describe it is the flow of electrons. Current is caused to flow by voltage, which can be looked at as "electrical pressure" that forces electrons to move. Currents can be made smaller or larger by decreasing the voltage across a fixed amount of resistance. As resistance is the quality of "resisting" or "limiting" current flow, we can change resistance to change current. For a give voltage, if we increase the resistance, we can make the current smaller, and if we decrease it, we can make current larger. In electronics, voltage equals current times resistance. E = I x R Also true is that current is equal to voltage divided by resistance. I = E/R As current equals volts divided by resistance, if we change one of them without changing the other, current will change. And in increase in voltage (with no change to resistance) will cause current to go up. The opposite is also true. Also, if we increase resistance (with no change in voltage), current will go down. And the opposite is true here, too.
If you are asking if a hot wire has a greater resistance than a cold wire then the answer I would say is yes. Cold wires have always had less resistance than hot wires
Your current will be 30/R Amps. Where R is the resistance in Ohms.
increases
If a resistive wire is elongated, its resistance will increase. This is because the longer length of wire will result in more collisions between electrons and the wire's atoms, leading to higher resistance. The resistance of a wire is directly proportional to its length.
Decreasing the length or increasing the thickness of the wire would cause its resistance to decrease.
Rubba Bubba Rubber coating, around the wire
To change the current in a wire, you can adjust the voltage applied to the wire or change the resistance in the circuit. Increasing the voltage will increase the current as per Ohm's Law (I = V/R), while decreasing the resistance will also result in an increase in current.
Resistance in a wire is caused by collisions between electrons and atoms in the wire, which slows down the flow of electrons. Factors that can influence the resistance of a wire include the material it is made of, its length, cross-sectional area, and temperature.
As the wire becomes longer, its resistance increases because there is more material for the electrons to travel through. On the other hand, as the wire becomes thicker, its resistance decreases because there is more space for the electrons to flow, reducing the collisions with the wire material and therefore lowering the resistance.
You can increase the resistance in the wire, by doing any of the following:Increase the length of the wire.Reduce the wire's cross-section.Change to a material that has a greater resistivity (specific resistance).You can increase the resistance in the wire, by doing any of the following:Increase the length of the wire.Reduce the wire's cross-section.Change to a material that has a greater resistivity (specific resistance).You can increase the resistance in the wire, by doing any of the following:Increase the length of the wire.Reduce the wire's cross-section.Change to a material that has a greater resistivity (specific resistance).You can increase the resistance in the wire, by doing any of the following:Increase the length of the wire.Reduce the wire's cross-section.Change to a material that has a greater resistivity (specific resistance).
Reducing the temperature of the wire will decrease its resistance. Also, using a wire with a larger cross-sectional area will lower resistance since there is more room for electrons to flow. Finally, using a more conductive material than copper, such as silver, can reduce resistance.
The resistance can be changed in following two ways: 1.By change the length of the wire. 2.By changing the area of cross section of the wire.
Assuming the wire follows Ohm's Law, the resistance of a wire is directly proportional to its length therefore doubling the length will double the resistance of the wire. However when the length of the wire is doubled, its cross-sectional area is halved. ( I'm assuming the volume of the wire remains constant and of course that the wire is a cylinder.) As resistance is inversely proportional to the cross-sectional area, halving the area leads to doubling the resistance. The combined effect of doubling the length and halving the cross-sectional area is that the original resistance of the wire has been quadrupled.
If the wire is short, its resistance will likely decrease. A shorter wire has less length for electrons to travel through, resulting in lower resistance according to the formula R = ρL/A, where R is resistance, ρ is resistivity, L is length, and A is cross-sectional area.