You use power factor when the load is not resistive, i.e. when it is reactive, and the phase angle between voltage and current is not zero.
To improve the power factor
Synchronous motors show some interesting properties, which finds applications in power factor correction. The synchronous motor can be run at lagging, unity or leading power factor. The control is with the field excitation, as described below:When the field excitation voltage is decreased, the motor runs in lagging power factor. The power factor by which the motor lags varies directly with the drop in excitation voltage. This condition is called under-excitation.When the field excitation voltage is made equal to the rated voltage, the motor runs at unity power factor.When the field excitation voltage is increased above the rated voltage, the motor runs at leading power factor. And the power factor by which the motor leads varies directly with the increase in field excitation voltage. This condition is called over-excitation.The most basic property of sycho motor is that it can be use as a CAPACITOR OR INDUCTOR both. Hence in turn it improves the power factor of system.The leading power factor operation of synchronous motor finds application in power factor correction. Normally, all the loads connected to the power supply grid run in lagging power factor, which increases reactive power consumption in the grid, thus contributing to additional losses. In such cases, a synchronous motor with no load is connected to the grid and is run over-excited, so that the leading power factor created by synchronous motor compensates the existing lagging power factor in the grid and the overall power factor is brought close to 1 (unity power factor). If unity power factor is maintained in a grid, reactive power losses diminish to zero, increasing the efficiency of the grid. This operation of synchronous motor in over-excited mode to correct the power factor is sometimes called as Synchronous_condenser.
Power Factor applies to all A.C.(alternating current) power supplies. It ma not be apparent when a purely resistive load is applied as this offers a PF of 1.0 but any other load type will have a power factor somewhere between 0.0 and 1.0.
p.f=kW/kV.A
When power factor is at unity, the voltage and current waves are aligned or in phase with one another. Since power is the product of voltage and current, power transfer is maximized at unity power factor. When power is transmitted at a lower power factor, greater current is required to deliver the same amount of power. When current is increased, the size of the transmission, distribution and generation systems, all have to be increased accordingly, along with the price of the killowatt-hour at the meter.
There is no significance to a power factor of 0.82.
There's no special significance to a power factor of 0.82.
There is no such thing as a 'low power-factor' wattmeter. A wattmeter always reads true power, regardless of the load's power factor.
In a circut we use capacitor in series for improving power factor
To improve the power factor
Because a dynamometer is used to measure the mechanical power output of a motor or engine. There are ways of measuring the power factor directly, for example use a plug-in power and energy monitor.
481 amps if the load has a power factor of 1, but if the power factor is less than one (e.g. if it's a motor) you also have to divide by the power factor.
Synchronous motors show some interesting properties, which finds applications in power factor correction. The synchronous motor can be run at lagging, unity or leading power factor. The control is with the field excitation, as described below:When the field excitation voltage is decreased, the motor runs in lagging power factor. The power factor by which the motor lags varies directly with the drop in excitation voltage. This condition is called under-excitation.When the field excitation voltage is made equal to the rated voltage, the motor runs at unity power factor.When the field excitation voltage is increased above the rated voltage, the motor runs at leading power factor. And the power factor by which the motor leads varies directly with the increase in field excitation voltage. This condition is called over-excitation.The most basic property of sycho motor is that it can be use as a CAPACITOR OR INDUCTOR both. Hence in turn it improves the power factor of system.The leading power factor operation of synchronous motor finds application in power factor correction. Normally, all the loads connected to the power supply grid run in lagging power factor, which increases reactive power consumption in the grid, thus contributing to additional losses. In such cases, a synchronous motor with no load is connected to the grid and is run over-excited, so that the leading power factor created by synchronous motor compensates the existing lagging power factor in the grid and the overall power factor is brought close to 1 (unity power factor). If unity power factor is maintained in a grid, reactive power losses diminish to zero, increasing the efficiency of the grid. This operation of synchronous motor in over-excited mode to correct the power factor is sometimes called as Synchronous_condenser.
Form factor allowed for larger DIMM modules..and there a re designed to use ATX power supplies.
load factor is the ratio of average load to max demand for a given period.High load factor meansless cost per KWHmore efficient use of power plant
Power Factor applies to all A.C.(alternating current) power supplies. It ma not be apparent when a purely resistive load is applied as this offers a PF of 1.0 but any other load type will have a power factor somewhere between 0.0 and 1.0.
power factor means kw/kva