infix: old Egyptians/Assirs some thousands year before
prefix: Jan Łukasiewicz (Polish Notation)
postfix: Burks, Warren, and Wright (Reverse Polish Notation)
people almost exclusively use infix notation to write mathematical expressions, computer languages almost exclusively allow programmers to use infix notation. However, if a compiler allowed infix expressions into the binary code used in the compiled version of a program, the resulting code would be larger than needed and very inefficient. Because of this, compilers convert infix expressions into postfix notation expressions, which have a much simpler set of rules for expression evaluation. Postfix notation gets its name from the fact that operators in a postfix expression follow the operands that they specify an operation on. Here are some examples of equivalent infix and postfix expressions Infix Notation Postfix Notation 2 + 3 2 3 + 2 + 3 * 6 3 6 * 2 + (2 + 3) * 6 2 3 + 6 * A / (B * C) + D * E - A - C A B C * / D E * + A C * - Where as infix notation expressions need a long list or rules for evaluation, postfix expressions need very few.
Like postfix and prefix, infix are now commonly used. Though there are no pure infixes in the English language, they have been invented over the years in movies and media. Some examples are Abso-bleedin'-lutely, guaran-damn-tee etc.
/**************************//**********cReDo**********//*****mchinmay@live.com***///C PROGRAM TO CONVERT GIVEN VALID INFIX EXPRESSION INTO POSTFIX EXPRESSION USING STACKS.#include#include#include#define MAX 20char stack[MAX];int top=-1;char pop();void push(char item);int prcd(char symbol){switch(symbol){case '+':case '-':return 2;break;case '*':case '/':return 4;break;case '^':case '$':return 6;break;case '(':case ')':case '#':return 1;break;}}int isoperator(char symbol){switch(symbol){case '+':case '-':case '*':case '/':case '^':case '$':case '(':case ')':return 1;break;default:return 0;}}void convertip(char infix[],char postfix[]){int i,symbol,j=0;stack[++top]='#';for(i=0;iprcd(stack[top]))push(symbol);else{while(prcd(symbol)
Example: prefix: * 2 + 3 4 infix: 2 * (3+4) postfix: 2 3 4 + *
/**************************//**********cReDo**********//*****mchinmay@live.com***///C PROGRAM TO CONVERT GIVEN VALID INFIX EXPRESSION INTO POSTFIX EXPRESSION USING STACKS.#include#include#include#define MAX 20char stack[MAX];int top=-1;char pop();void push(char item);int prcd(char symbol){switch(symbol){case '+':case '-':return 2;break;case '*':case '/':return 4;break;case '^':case '$':return 6;break;case '(':case ')':case '#':return 1;break;}}int isoperator(char symbol){switch(symbol){case '+':case '-':case '*':case '/':case '^':case '$':case '(':case ')':return 1;break;default:return 0;}}void convertip(char infix[],char postfix[]){int i,symbol,j=0;stack[++top]='#';for(i=0;iprcd(stack[top]))push(symbol);else{while(prcd(symbol)
To convert an infix expression to postfix and prefix in PHP, you can implement the Shunting Yard algorithm for postfix conversion and a modified approach for prefix conversion. For postfix, you use a stack to reorder operators based on their precedence and associativity while scanning the infix expression. For prefix, you can reverse the infix expression, convert it to postfix, and then reverse the resulting postfix expression. Here’s a brief code outline for both conversions: function infixToPostfix($infix) { // Implement the Shunting Yard algorithm to convert infix to postfix } function infixToPrefix($infix) { // Reverse the infix expression // Convert to postfix using infixToPostfix // Reverse the postfix result to get prefix } You would need to handle operators, parentheses, and precedence rules within these functions.
people almost exclusively use infix notation to write mathematical expressions, computer languages almost exclusively allow programmers to use infix notation. However, if a compiler allowed infix expressions into the binary code used in the compiled version of a program, the resulting code would be larger than needed and very inefficient. Because of this, compilers convert infix expressions into postfix notation expressions, which have a much simpler set of rules for expression evaluation. Postfix notation gets its name from the fact that operators in a postfix expression follow the operands that they specify an operation on. Here are some examples of equivalent infix and postfix expressions Infix Notation Postfix Notation 2 + 3 2 3 + 2 + 3 * 6 3 6 * 2 + (2 + 3) * 6 2 3 + 6 * A / (B * C) + D * E - A - C A B C * / D E * + A C * - Where as infix notation expressions need a long list or rules for evaluation, postfix expressions need very few.
(a + b) * c / ((x - y) * z)
You convert an (infix) expression into a postfix expression as part of the process of generating code to evaluate that expression.
#include<stdio.h> #include<conio.h> #include<string.h> char symbol,s[10]; int F(symbol) { switch(symbol) { case '+': case '-':return 2; case '*': case '/':return 4; case '^': case '$':return 5; case '(':return 0; case '#':return -1; default :return 8; } } int G(symbol) { switch(symbol) { case '+': case '-':return 1; case '*': case '/':return 3; case '^': case '$':return 6; case '(':return 9; case ')':return 0; default: return 7; } } void infix_to_postfix(char infix[],char postfix[]) { int top=-1,j=0,i,symbol; s[++top]='#'; for(i=0;i<strlen(infix);i++) { symbol=infix[i]; while(F(s[top])>G(symbol)) { postfix[j]=s[top--]; j++; } if(F(s[top])!=G(symbol)) s[++top]=symbol; else top--; } while(s[top]!='#') { postfix[j++]=s[top--]; } postfix[j]='\0'; } void main() { char infix[30],postfix[30]; clrscr(); printf("Enter the valid infix expression\n"); scanf("%s",infix); infix_to_postfix(infix, postfix); printf("postfix expression is \n %s", postfix); getch(); }
Yes
stack is the basic data structure needed to convert infix notation to postfix
Like postfix and prefix, infix are now commonly used. Though there are no pure infixes in the English language, they have been invented over the years in movies and media. Some examples are Abso-bleedin'-lutely, guaran-damn-tee etc.
/**************************//**********cReDo**********//*****mchinmay@live.com***///C PROGRAM TO CONVERT GIVEN VALID INFIX EXPRESSION INTO POSTFIX EXPRESSION USING STACKS.#include#include#include#define MAX 20char stack[MAX];int top=-1;char pop();void push(char item);int prcd(char symbol){switch(symbol){case '+':case '-':return 2;break;case '*':case '/':return 4;break;case '^':case '$':return 6;break;case '(':case ')':case '#':return 1;break;}}int isoperator(char symbol){switch(symbol){case '+':case '-':case '*':case '/':case '^':case '$':case '(':case ')':return 1;break;default:return 0;}}void convertip(char infix[],char postfix[]){int i,symbol,j=0;stack[++top]='#';for(i=0;iprcd(stack[top]))push(symbol);else{while(prcd(symbol)
#include <iostream> #include <cstdlib> #include <cstring> #include <cstdio> #define size 400 using namespace std; char infix[size]="\0",postfix[size]="\0",Stack[size]; int top; int precedence(char ch) { switch(ch) { case '^':return 5; case '/':return 4; case '*':return 4; case '+':return 3; case '-':return 3; default:return 0; } } char Pop() { char ret; if(top!=-1) { ret=Stack[top]; top--; return ret; } else return '#'; } char Topelem() { char ch; if(top!=-1) ch=Stack[top]; else ch='#'; return ch; } void Push(char ch) { if(top!=size-1) { top++; Stack[top]=ch; } } int braces(char* s) { int l,r; l=0;r=0; for(int i=0;s[i];i++) { if(s[i]=='(') l++; if(s[i]==')') r++; } if(l==r) return 0; else if(l<r) return 1; else return -1; } int main() { char ele,elem,st[2]; int T,prep,pre,popped,j=0,chk=0; cin>>T; while(T--) { j=0;chk=0;top=-1; strcpy(postfix," "); cin>>infix; chk=braces(infix); if(chk==0) { for(int i=0;infix[i];i++) { if(infix[i]=='(') { elem=infix[i]; Push(elem); } else if(infix[i]==')') { while((popped=Pop())!='(') { postfix[j++]=popped; } } else if(infix[i]=='^'infix[i]=='/'infix[i]=='*'infix[i]=='+'infix[i]=='-') { elem=infix[i]; pre=precedence(elem); ele=Topelem(); prep=precedence(ele); if(pre>prep) Push(elem); else { while(prep>=pre) { if(ele=='#') break; popped=Pop(); ele=Topelem(); postfix[j++]=popped; prep=precedence(ele); } Push(elem); } } else { postfix[j++]=infix[i]; } } while((popped=Pop())!='#') postfix[j++]=popped; postfix[j]='\0'; cout<<postfix; } } }
Example: prefix: * 2 + 3 4 infix: 2 * (3+4) postfix: 2 3 4 + *
/**************************//**********cReDo**********//*****mchinmay@live.com***///C PROGRAM TO CONVERT GIVEN VALID INFIX EXPRESSION INTO POSTFIX EXPRESSION USING STACKS.#include#include#include#define MAX 20char stack[MAX];int top=-1;char pop();void push(char item);int prcd(char symbol){switch(symbol){case '+':case '-':return 2;break;case '*':case '/':return 4;break;case '^':case '$':return 6;break;case '(':case ')':case '#':return 1;break;}}int isoperator(char symbol){switch(symbol){case '+':case '-':case '*':case '/':case '^':case '$':case '(':case ')':return 1;break;default:return 0;}}void convertip(char infix[],char postfix[]){int i,symbol,j=0;stack[++top]='#';for(i=0;iprcd(stack[top]))push(symbol);else{while(prcd(symbol)