This space is for answering "http://wiki.answers.com/Q/Why_does_voltage_remain_constant_in_the_reverse_breakdown_region_in_a_zener_diode" Why does voltage remain constant in the reverse breakdown region in a zener diode?
The point in the forward operating region of the characteristic curve where conduction starts to increase rapidly is called Knee voltage of a PN Junction Diode.The breakdown voltage of a diode is the minimum reverse voltage to make the diode conduct in reverse.(or) Breakdown voltage is a parameter of a diode that defines the largest reverse voltage that can be applied without causing an exponential increase in the current in the diode.-- Dinakar
Zener breakdown is the phenomena wherein the Zener diode experiences reverse breakdown at a much lower voltage than a normal diode, which may breakdown in excess of 100 volts, depending on the type. This is useful because the Zener will hold the same voltage after breakdown, regardless of the input voltage, making them excellent for voltage controlled switches and references.
A breakdown diode is called so because it operates in the breakdown region of its voltage-current characteristic curve. In this region, a small increase in voltage can lead to a large increase in current, allowing the diode to conduct in reverse bias. This behavior is typically utilized in applications like voltage regulation and clamping, where the diode prevents excessive voltage from damaging other components. The name reflects its ability to "break down" and conduct under certain voltage conditions.
A diode (some people incorrectly call them rectifiers) is a semiconductor device that allows a current to flow in one direction. A Zener diode allows a reverse to current to flow at a defined voltage. A common application for them is as a voltage regulator. Named for C M Zener , US Physicist. A zener diode is a diode and like all diodes it will conduct in both directions. If a reversed voltage is applied it will breakdown and conduct current. Most diodes when they breakdown the reversed voltage cannot be predictable. However a zener diode when they do breakdown in the reverse voltage mode that voltage can be made as predictable and remain +/- % of the breakdown voltage. Therefore this steady voltage can be used as a regulator for instance or a definite voltage drop if need be.
Current flows in a reverse biased diode because diodes are not ideal. They do have leakage current and a breakdown voltage in reverse, just as they have a breakdown current in forward and a non-linear and non-parallel forward voltage to current curve. It is also possible that you are looking at a zener diode. A zener diode is specifically design to conduct at a certain voltage in reverse.
Zener diodes are normally operated in their reverse breakdown voltage curve.
The point in the forward operating region of the characteristic curve where conduction starts to increase rapidly is called Knee voltage of a PN Junction Diode.The breakdown voltage of a diode is the minimum reverse voltage to make the diode conduct in reverse.(or) Breakdown voltage is a parameter of a diode that defines the largest reverse voltage that can be applied without causing an exponential increase in the current in the diode.-- Dinakar
You are talking about a special type of diode called a zener diode which is designed, using special junction doping, to allow controllable reverse bias operation at a reduced breakdown voltage with a much sharper knee point curve than its normal forward breakdown curve. This allows the diode to be used as a voltage regulator. Normally, a diode's reverse breakdown curve is such that, at reverse breakdown, it avalanches and, without current limits in place, will self destruct. The zener diode, on the other hand, will operate in reverse much the same as it does in forward, just at a different voltage, and with a much sharper current to voltage curve, making it highly suitable as a voltage regulator.
Zener breakdown is the phenomena wherein the Zener diode experiences reverse breakdown at a much lower voltage than a normal diode, which may breakdown in excess of 100 volts, depending on the type. This is useful because the Zener will hold the same voltage after breakdown, regardless of the input voltage, making them excellent for voltage controlled switches and references.
A breakdown diode is called so because it operates in the breakdown region of its voltage-current characteristic curve. In this region, a small increase in voltage can lead to a large increase in current, allowing the diode to conduct in reverse bias. This behavior is typically utilized in applications like voltage regulation and clamping, where the diode prevents excessive voltage from damaging other components. The name reflects its ability to "break down" and conduct under certain voltage conditions.
Zener diodes are heavily doped to create a narrow depletion region, allowing them to operate in the reverse breakdown region where they exhibit the Zener effect. This effect causes the diode to conduct in reverse bias at a specific voltage, ideal for voltage regulation applications.
Let me answer as I've learned. In this case, if the voltage source for forward bias is greater than the voltage source for reverse bias, current will flow in this semiconductive diode. And another way may occur. That is, in case reverse bias voltage is as large as breakdown voltage, reverse breakdown current ,which is because of the minority carrier in p region, will flow and this current can be large to damage the diode. If there is any mistake in my answer, please correct me and I'll thank you for that.
The critical value of the voltage, at which the breakdown of a P-N junction diode occurs is called the breakdown voltage.The breakdown voltage depends on the width of the depletion region, which, in turn, depends on the doping level. The junction offers almost zero resistance at the breakdown point.
The zener diode can be used as a voltage regulator because its reverse bias (technically, reverse breakdown) current to voltage curve is particularly steep, resulting in very little voltage change even when current changes. Any diode, actually, exhibits this steep curve in the forward direction, but it is steeper in the reverse direction in zeners, making them more suitable for this application.This works because of the doping that is used in the PN junction, altering the tunneling behavior of electrons from the P side valence band to the N side conduction band. This allows controlled breakdown, without avalanche.The zener diode can be used as a voltage regulator because in the break-down region, the voltage of the zener diode becomes constant no matter how high the current goes.
An ordinary diode is designed to have a high breakdown voltage, causing it to experience avalanche breakdown when the reverse bias voltage surpasses its breakdown voltage. In contrast, a Zener diode is engineered with a specific doping profile that allows it to exhibit Zener breakdown at lower voltages by enabling electron tunneling across the depletion region. This fundamental difference in design leads to the distinct breakdown behaviors in each type of diode.
The breakdown region of a transistor is the region where the supply voltage, Vcc, becomes so large that the collector-emitter junction of the transistor breaks down and conducts, even though there is no base current.
A diode (some people incorrectly call them rectifiers) is a semiconductor device that allows a current to flow in one direction. A Zener diode allows a reverse to current to flow at a defined voltage. A common application for them is as a voltage regulator. Named for C M Zener , US Physicist. A zener diode is a diode and like all diodes it will conduct in both directions. If a reversed voltage is applied it will breakdown and conduct current. Most diodes when they breakdown the reversed voltage cannot be predictable. However a zener diode when they do breakdown in the reverse voltage mode that voltage can be made as predictable and remain +/- % of the breakdown voltage. Therefore this steady voltage can be used as a regulator for instance or a definite voltage drop if need be.