E/R=I. 100/50=2 amps.
In series, you just add the resistor values together to find the total resistance. In parallel you can use the following equation you can find the total resistance by multiplying the lowest and highest resistor value, the dividing that by the sum of all the resistor values you have in parallel. you could also take the inverse of all the inverses of you resistor values added together.
If you have three 100 ohm resistors, and you want an equivalent resistor of 66.7 ohms, put two resistors in series, and then parallel the third resistor across the first two. Resistors in series: R1 + R2 Resistors in parallel: R1 * R2 / (R1 + R2) This example: Two 100 ohm resistors in series: 100 + 100 = 200 A 100 ohm resistor in parallel with a 200 ohm resistor: 100 * 200 / (100 + 200) = 66.7
-- The current in each individual resistor is (voltage across the whole circuit) divided by (the resistance of the individual resistor). -- The current in any individual resistor is less than the total current in the circuit. -- The total current in the circuit is the sum of the currents through each individual resistor.
You need to calculate the equivalent resistance. For instance, if the three resistors are connected in series, simply add all the resistance values up. Then, you calculate the current (in amperes) using Ohm's Law (V=IR); that is, you need to divide the voltage by the resistance.
biasing resistor is important because the voltage passing through it will limit the current and derive the next device, i.e. transistor etc. when a signal is applied to this circuit, biasing resistor helps to signify that signal and as a result we can examine our output.
It depends on where and how the resistor is placed in a circuit. A string of series resistors will split the voltage across all them depending on their values. All of the resistors in parallel will have the same voltage across all of them no matter what their resistance is.
E/R=I. 100/50=2 amps.
No. The resistance in a series circuit is all the resistor values added together. eg. If two resistors were in a circuit, one was 10 ohms and the other was 30 ohms, the resistance in the circuit would be 30 ohms. Hope this helps!
The current in each resistor in a series circuit is the same. Kirchoff's Current Law states that the sum of the currents entering a node must add up to zero. The connection between two resistors in a series circuit is a node. The current entering the node from one resistor is equal to the current leaving the node into the next resistor.
lf all resistors are in parallel, yes. If they are in series, not necessarily - this depends on the resistor values (if they are all the same, then yes, if not no).
A: In a series circuit the currant is the same for all components but the IR drop will change foe each. By adding Resistance the current will decrease accordingly
In series, you just add the resistor values together to find the total resistance. In parallel you can use the following equation you can find the total resistance by multiplying the lowest and highest resistor value, the dividing that by the sum of all the resistor values you have in parallel. you could also take the inverse of all the inverses of you resistor values added together.
If you have three 100 ohm resistors, and you want an equivalent resistor of 66.7 ohms, put two resistors in series, and then parallel the third resistor across the first two. Resistors in series: R1 + R2 Resistors in parallel: R1 * R2 / (R1 + R2) This example: Two 100 ohm resistors in series: 100 + 100 = 200 A 100 ohm resistor in parallel with a 200 ohm resistor: 100 * 200 / (100 + 200) = 66.7
the reason blower does not work on all speeds, is the fan blower motor resistor. The resistor is a 4-5 step series circuit, 1 resistor is added for each reduction in speed. If one burns out then so will all speeds below it. The "high" circuit usually has a separate fuse and bypasses the resistor altogether.
-- The current in each individual resistor is (voltage across the whole circuit) divided by (the resistance of the individual resistor). -- The current in any individual resistor is less than the total current in the circuit. -- The total current in the circuit is the sum of the currents through each individual resistor.
A list of supplies needed for an experiment is commonly referred to as a "materials list" or "materials required." This list outlines all the items, equipment, and substances necessary to conduct the experiment successfully. It helps ensure that researchers have everything they need before starting the experiment.