answersLogoWhite

0


Best Answer

lf all resistors are in parallel, yes. If they are in series, not necessarily - this depends on the resistor values (if they are all the same, then yes, if not no).

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: In a circuit the voltage across all resistors is the same.?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Movies & Television

If the resistance in the circuit is increased what will happen to the current and voltage?

* resistance increases voltage. Adding more resistance to a circuit will alter the circuit pathway(s) and that change will force a change in voltage, current or both. Adding resistance will affect circuit voltage and current differently depending on whether that resistance is added in series or parallel. (In the question asked, it was not specified.) For a series circuit with one or more resistors, adding resistance in series will reduce total current and will reduce the voltage drop across each existing resistor. (Less current through a resistor means less voltage drop across it.) Total voltage in the circuit will remain the same. (The rule being that the total applied voltage is said to be dropped or felt across the circuit as a whole.) And the sum of the voltage drops in a series circuit is equal to the applied voltage, of course. If resistance is added in parallel to a circuit with one existing circuit resistor, total current in the circuit will increase, and the voltage across the added resistor will be the same as it for the one existing resistor and will be equal to the applied voltage. (The rule being that if only one resistor is in a circuit, hooking another resistor in parallel will have no effect on the voltage drop across or current flow through that single original resistor.) Hooking another resistor across one resistor in a series circuit that has two or more existing resistors will result in an increase in total current in the circuit, an increase in the voltage drop across the other resistors in the circuit, and a decrease in the voltage drop across the resistor across which the newly added resistor has been connected. The newly added resistor will, of course, have the same voltage drop as the resistor across which it is connected.


Definition of voltage divider?

Basically, if you have two resistors in series, then the total resistance is Rt = R1+R2. According to Kirchhoff's law, the total current entering a junction must be equal to the total current leaving it, so for a series circuit the current is the same in both resistors. From Ohm's law V=IRt and so from above V = I(R1+R2). This means that that total voltage in the circuit, V, is equal to the sum of the voltages across each resistor V1=IR1 and V2=IR2. This "divides" the voltage, so that for a 30V supply with two resistors of 10 ohms and 20 ohms respectively, the voltage across the first resistor will be 10V and the voltage across the second will be 20V. In this way a component requiring a lower voltage than the supply voltage can tap off from one of the resistors.


What happens to the current in a circuit as a capacitor charges?

What happens to the current in a circuit as a capacitor charges depends on the circuit. As a capacitor charges, the voltage drop across it increases. In a typical circuit with a constant voltage source and a resistor charging the capacitor, then the current in the circuit will decrease logarithmically over time as the capacitor charges, with the end result that the current is zero, and the voltage across the capacitor is the same as the voltage source.


Why does voltage change across components but not current?

we know,v=IRresistor, capacitor, inductor and other electrical components have their own specific characteristics to drop voltage or to consume voltage at a fixed amount.the supplied voltage produces a current that changes with the change of the voltage. It doesn't changes simultaneously. so the voltage change across the components. but the current doesn't changes across component...AnswerThink of a circuit with several loads as being rather like a number of central heating radiators connected in the same way. The same water (current) flows through each radiator. In order for that water to flow, we need a pump to supply pressure (supply voltage) across all the radiators. At the same time, there must also be a pressure difference (voltage drop) across each individual radiator or the water wouldn't flow through it. The sum of these individual pressures must add up to equal the pressure supplied by the pump.So the same current flows through individual loads, driven by the supply voltage applied across the entire circuit. At the same time, there must also be voltages across individual loads (called 'voltage drops'), or current wouldn't be flowing through them. The sum of the individual voltage drops will equal the supply voltage.


Are the voltages across all branches of a parallel circuit the same?

In a parallel circuit, all the branches are joined together at their start and again at their end by a conductor (usually wire).Now, the surface of a conductor (ideally) is an equipotential surface. That is, any point of its surface has the same electric potential.And since the voltage across each branch equals the difference in electric potentials between its start and its end, and these potentials are the same for every branch, it follows that the voltages across each branch must be equal to each other.

Related questions

In a circuit the voltage across all resistores is the same?

It depends upon the connection of the resistors, if the resistors are connected in parallel then the voltage is same where as in case of resistors connected in series the voltage is different across different resistors.


Did the the total voltage across the resistors does not depend on the resistor value?

It depends on where and how the resistor is placed in a circuit. A string of series resistors will split the voltage across all them depending on their values. All of the resistors in parallel will have the same voltage across all of them no matter what their resistance is.


What are Relationship between the voltage drop across the resistors and the currents through the resistors when resistors are connected in parallel?

A: The relationship is that the current will divide for each paths in a parallel circuit and the voltage drop across each will be the source voltage. In a series circuit the current will remain the same for each component but the voltage will divide to reflect each different component value. And the sum of all of the voltage drops will add to the voltage source.


What is the PD across two resistors connected parallel to a battery of emf 6V?

The potential difference across two resistors connected in parallel to a battery with a potential difference of 6 volts is 6 volts. Kirchoff's Voltage Law: The signed sum of the voltage drops in a series circuit is zero. This means that that the two series circuits involving the battery and each resistor have the same voltage across each other, and the series circuit involving the two resistors have the same voltage across each other.


When resistors are connected in series in a circuit. what are the relationships between the voltage drops across the resistor and the currents through the resistors?

When resistors are connected in series in a circuit . the voltage drop across each resistor will be equal to its resistance, as V=IR, V is direct proportional to R. An A: The relationship is that the current will divide for each paths in a parallel circuit and the voltage drop across each will be the source voltage. In a series circuit the current will remain the same for each component but the voltage will divide to reflect each different component value. And the sum of all of the voltage drops will add to the voltage source


If two resistors have same voltage drop in a series circuit it means?

It means the two resistors have same resistance


When resistors are connected in parallel what are the relationships between the voltage drops across the resistor and currents through the resistors?

A: The relationship is that the current will divide for each paths in a parallel circuit and the voltage drop across each will be the source voltage. In a series circuit the current will remain the same for each component but the voltage will divide to reflect each different component value. And the sum of all of the voltage drops will add to the voltage source.


How do you get half of the voltage from a DC supply circuit?

By using a voltage divider, that is two resistors of the same value in series across the DC supply. Half of the supply voltage will be at the point where the two resistors is connected. But how much wattage of those resistors is also an issue.


What is the total voltage drop across a set of resistors in series?

Simply add all of the component's resistances together and that will give you circuits total resistance. If you're dealing with a 'series-parallel', or 'parallel' circuit, the equations will change, but in a simple series circuit, the total resistance is just the total of all the component's resistance.


If the resistance in the circuit is increased what will happen to the current and voltage?

* resistance increases voltage. Adding more resistance to a circuit will alter the circuit pathway(s) and that change will force a change in voltage, current or both. Adding resistance will affect circuit voltage and current differently depending on whether that resistance is added in series or parallel. (In the question asked, it was not specified.) For a series circuit with one or more resistors, adding resistance in series will reduce total current and will reduce the voltage drop across each existing resistor. (Less current through a resistor means less voltage drop across it.) Total voltage in the circuit will remain the same. (The rule being that the total applied voltage is said to be dropped or felt across the circuit as a whole.) And the sum of the voltage drops in a series circuit is equal to the applied voltage, of course. If resistance is added in parallel to a circuit with one existing circuit resistor, total current in the circuit will increase, and the voltage across the added resistor will be the same as it for the one existing resistor and will be equal to the applied voltage. (The rule being that if only one resistor is in a circuit, hooking another resistor in parallel will have no effect on the voltage drop across or current flow through that single original resistor.) Hooking another resistor across one resistor in a series circuit that has two or more existing resistors will result in an increase in total current in the circuit, an increase in the voltage drop across the other resistors in the circuit, and a decrease in the voltage drop across the resistor across which the newly added resistor has been connected. The newly added resistor will, of course, have the same voltage drop as the resistor across which it is connected.


In a parallel circuit the voltage is across all branches?

the same In a parallel circuit, the voltage travels through all the closed circuit paths. They are not branches.


What are the relations between individual voltages and the total voltages when resistors are connected in series and in parallel?

-- The current in each individual resistor is (voltage across the whole circuit) divided by (the resistance of the individual resistor). -- The current in any individual resistor is less than the total current in the circuit. -- The total current in the circuit is the sum of the currents through each individual resistor.