Potential difference V = I R. Here I is the current passing through the conductor. R is the resistance of the conductor. In case of good conductor the resistance will be almost zero and so the product too becomes almost zero. Hence the potential difference is neglected.
First of all, by definition, 'voltage' is another word for 'potential difference', and a potential differenceexists between two different points. So a single conductor cannot experience a 'voltage' or 'potential difference'. Your question, therefore, should ask why a neutral conductor has no 'potential'. By general agreement, potentials are measured with respect to earth (ground), which is arbitrarily assumed to be at 0 volts.The answer is that a neutral conductor is earthed, or grounded, so theoretically its potential must be the same as earth -i.e. 0 volts. But, in practise, due to the resistance of the conductor that connects the neutral conductor to earth, the neutral conductor can often have a potential of several volts with respect to earth.
A potential difference (volts) is set up between the two ends of a conductor. If there are any electrons available to move, then their negative electric charges persuade them to move away from the more negative potential and toward the more positive potential, resulting in current.
Electrical potential deals with moving a charge in a direction opposite to an electric field. So what we are actually dealing with is Potential Energy. This can be calculated by the equation of PE = QEd where Q is the charge of the particle, E is the electric field and d is the distance the charged particle has been moved. The units of all this ends up being Joules (J). Now, electric potential difference is another story. This is the work per unit charge. In this case the unit will be V (volts).
In formal electrical jargon, "potential difference" describes voltage. So a 120 V live wire should have a 120 V potential to the earth wire.AnswerIt depends where you live. In Europe, the nominal potential difference between a line and earth conductor is approx 230 V (approximately, because earth potential might be a little lower than the neutral potential); for North America, the nominal potential difference is about 120 V.
The Ohm is a unit of measure of resistance to the flow of electricity. The ohm is defined as a resistance between two points of a conductor when a constant potential difference of 1 volt, applied to these points, produces in the conductor a current of 1 ampere.
Potential difference between the ends of a conductor refers to the electrical energy difference per unit charge between two points in the conductor. It is commonly known as voltage and is measured in volts. A potential difference is necessary for the flow of electric current in a conductor.
A 'voltage' is another name for a potential difference. As the name implies, a potential difference exists between two different points or, in the case of an electrical installation, between the line conductor and the neutral conductor. So the neutral does not 'import voltages'. Voltages exist between the line (hot) conductor and the neutral conductor.
There must be a potential difference between the two points in the conductor in order to maintain a flow of charge. This potential difference creates an electric field that drives the charges to move from one point to another.
A good conductor ana potential difference between two poles
When a potential difference exists between two points of a conductor, electrons slowly drift between those two points along that conductor. If there is no potential difference within the metal, then the electrons simply float randomly between atoms within the metal. Electrons would only oscillate in response to an external, oscillating voltage.
Your question is not clear. A current is generated when a group of electrons flow through a conductor, and this happens when there is a potential difference between the 2 ends of the conductor. If you want to know how can we start the flow of electrons it is by creating a potential difference in between the 2 ends of the conductor.
Electromotive force (potential difference, voltage) between two points of a conductor.
Potential Difference
If the potential difference across a circuit is doubled, the current flowing through the circuit will also double, assuming the resistance remains constant. This is because Ohm's Law states that current is directly proportional to voltage when resistance is held constant.
The free electrons in a conductor will, when a difference of potential (voltage) is applied at its ends, participate in electron current flow (or just current, if you prefer). The voltage applied to the conductor will drive current through the conductor, and the free electrons will support current flow. These electrons will actually move through the conductor. As electrons are driven into one end of the conductor, the free electrons "shift over" and electrons stream out the other end of the conductor. This is the essence of current flow in conductors.
First of all, by definition, 'voltage' is another word for 'potential difference', and a potential differenceexists between two different points. So a single conductor cannot experience a 'voltage' or 'potential difference'. Your question, therefore, should ask why a neutral conductor has no 'potential'. By general agreement, potentials are measured with respect to earth (ground), which is arbitrarily assumed to be at 0 volts.The answer is that a neutral conductor is earthed, or grounded, so theoretically its potential must be the same as earth -i.e. 0 volts. But, in practise, due to the resistance of the conductor that connects the neutral conductor to earth, the neutral conductor can often have a potential of several volts with respect to earth.
The ohm is defined as a resistance between 2 points of a conductor when a constant potential difference of 1 volt, applied to these points, produces in the conductor a current of 1 ampere, the conductor not being the seat of any electromotive force.