Voltage drop is resultant of IR ie current and the line resistance, not dependent on impressed emf
An induced electromotive force (emf) is an induced voltage. Voltage (emf) causes current flow, and this induced voltage will cause a current that is called the induced current.We might also add that the induced current will cause a magnetic field to expand about the current path, and this field will "sweep" the conductor. The sweeping of the conductor by that expanding magnetic field will set up an emf that will oppose the emf that was creating it.CommentTechnically, there is no such thing as an 'induced current'. It is voltage that is induced. Any current flows as a result of that induced voltage being applied to a load. But that current is certainly NOT induced!
EMF (E''electromotive Force'') is another term for Volts, hence the E in electronic formulas and EMF is measured with a volt meter. A potentiometer is not a meter at all, it is a variable resistor
E. Joined in parallel, the voltage (or electromotive force, "emf") isn't additive. You'd get four times the current, or four times the life of a single battery, but it would have the same voltage.
initially the induced emf i.e.,self inductance is high than mutually induced emf in the other .....so coefficient of coupling is high
the voltage of a battery could be larger than the emf if you are to charge the battery, in that case V=E+Ir .
No, the terminal potential difference cannot be greater than the emf supplied. The emf represents the maximum potential difference that the cell or battery can provide, while the terminal potential difference is the actual potential difference across the terminals when a load is connected.
The condition for the terminal voltage across a secondary cell to be equal to its emf is when there is no current flowing through the cell. When there is no current, there is no voltage drop across the internal resistance of the cell, and thus the terminal voltage equals the emf.
To measure the total emf simply connect the battery and voltmeter with the right terminals , but to measure the terminal potential difference which is less than the emf the voltmeter is connected in parallel with the battery
Bcoz the emf which is to be measured is less than emf of driving cell....
When it is being loaded.
emf and voltageAnswerElectromotive force is the potential difference created by a source, such as a battery or generator, when it is not connected to a load -in other words, on 'open circuit'.Voltage drop is the potential difference across a load, such as a resistor, which causes current to flow through that load.A voltage drop occurs, internally, in batteries and generators, when they are supplying a load. The battery or generator's terminal voltage, when supplying a load, is its e.m.f. less its internal voltage drop.
EMF is electromotive force. It is another name for voltage. Voltage is electric potential in joules per coulomb. Current is electric flow, in amperes. Amperes are coulombs per second. Voltage and current are not the same thing, and "emf current", or "voltage current" does not make sense.
No. Because during charging process of a battery current flows in opposite direction to the discharging/consumption. so equation Emf=P.d. +Ir is changed to Emf=p.d. +Ir. Hence during charging process of a battery Potential difference is greater than electromotive force.
145.25 v
Voltage drop is resultant of IR ie current and the line resistance, not dependent on impressed emf
"The potential difference between the terminals of a battery will equal the emf of the battery when there is no current in the battery. At this time, the current though, and hence the potential drop across the internal resistance is zero. This only happens when there is no load placed on the battery-that includes measuring the potential difference with a voltmeter! The terminal voltage will exceed the emf of the battery when current is driven backward through the battery, in at its positive terminal and out at its negative terminal." Raheel Ahmed Quaid i Azam University Islamabd Physics Dept