The kVA (kilovolt ampere) is the vector sum of real + reactive power in an AC circuit. The kW (kilowatt) is a measure of the real power in that circuit. Inherently, a circuit will not require only real power, but also reactive power. Thus kVA is a more meaningful value when considering sizing equipment (such as Transformers, bus work, breakers, etc.) because this equipment must be sized for the total current drawn, not just the real power usage.
To convert amps to kilovolt-amperes (kVA), you can use the formula: kVA = (Amps × Voltage) / 1000. The voltage level is essential for the calculation, as kVA is a function of both current (in amps) and voltage (in volts). For example, at a voltage of 400V, 350 amps would be approximately 140 kVA (350 × 400 / 1000). Without the voltage value, the kVA cannot be accurately determined.
1.035 KVA
Yes, you can use both, but watts is more useful; it provides the total amount of power the generator can output.
635kva
Va=volts x amps. The K stands for one thousand. So 1 Kva is one thousand watts. So 415v times 120a= 49,800 what's. You divide that by a thousand and you get 49.8. So it would be 49.8 Kva.
12HP is approximately 10.8 KVA. You would want to use a 15KVA transformer to supply this motor. KW = HP * .75 KVA = KW * 1.2 (These formulas are approximate)
To determine the KVA needed for a 200A panel, you can use the formula KVA = (Voltage x Amperage)/1000. Assuming a standard voltage of 120V, the KVA would be 24 KVA (120V x 200A / 1000 = 24 KVA).
To convert amps to kVA, you use the following formula: Amps = (kVA x 1000 / voltage) / 1.73
To convert amps to kilovolt-amperes (kVA), you can use the formula: kVA = (Amps × Voltage) / 1000. The voltage level is essential for the calculation, as kVA is a function of both current (in amps) and voltage (in volts). For example, at a voltage of 400V, 350 amps would be approximately 140 kVA (350 × 400 / 1000). Without the voltage value, the kVA cannot be accurately determined.
To convert from KVA to watts, you can use the formula: Watts = KVA x 1000. In this case, 63 KVA generator would be equivalent to 63,000 watts.
To convert AC tonnage to kVA and kW, use the following formulas: For kVA: kVA = (tonnage x 3.517) For kW: kW = (tonnage x 3.517 x power factor). Remember to consider the power factor of the system when converting from tonnage to kVA and kW.
1.035 KVA
To convert 110 kVA at 440 volts to amperes, you can use the formula: Amperes = kVA / (Volts x 1.73) for three-phase systems. In this case, 110 kVA / (440 volts x 1.73) ≈ 143.37 amperes.
Yes, you can use both, but watts is more useful; it provides the total amount of power the generator can output.
4core*240mm square..
To calculate the amperage in the secondary side of a transformer, you can use the formula: Amps = kVA / (Volts x Sqrt(3)). For a 250 kVA transformer with a 220-volt secondary, the amperage will be approximately 660.4 Amps.
Yes, 2.8 kVA is equal to 2800 watts. This is because 1 kVA is equivalent to 1000 watts, so 2.8 kVA would be 2800 watts.