#include <iostream>
using namespace std;
int main()
{
int i, number=0, factorial=1;
// User input must be an integer number between 1 and 10
while(number<1 number>10)
{
cout << "Enter integer number (1-10) = ";
cin >> number;
}
// Calculate the factorial with a FOR loop
for(i=1; i<=number; i++)
{
factorial = factorial*i;
}
// Output result
cout << "Factorial = " << factorial << endl;
A recursive function is one that calls upon itself until a given result in the original call is met. Take a look at this example. Program Recursion; Uses crt; Var number:longint; Function Factorial(number:longint):longint; Begin if number > 0 then factorial:=number*factorial(number-1) else factorial:=1; End; Begin clrscr; readln(number); writeln(factorial(number)); readln; End. Note how the function factorial calls itself.
' Iterative solution Function iterativeFactorial(ByVal n As Long) As Long Dim factorial As Long = 1 For i As Long = 1 To n factorial *= i Next Return factorial End Function ' Recursive solution Function recursiveFactorial(ByVal n As Long) As Long If n <= 1 Then Return n End If Return n * recursiveFactorial(n - 1) End Function
The factorial f(n) = n * (n-1) * (n-2) * .. 1. For example factorial 5 (written as 5!) = 5 x 4 x 3 x 2 x 1 = 120. The function below returns the factorial of the parameter n. int factorial( int n) { if (n==1) return 1 else return n* factorial( n-1) ; }
// Iterative solution public static final long iterativeFactorial(final long n) { long factorial = 1; for (long i = 1; i <= n; i++) { factorial *= i; } return factorial; } // Recursive solution public static final long recursiveFactorial(final long n) { if (n <= 1) { return n; } return n * recursiveFactorial(n - 1); } // Arbitrary length solution - may take a while, but works on any positive number. public static final BigInteger factorial(final BigInteger n) { BigInteger factorial = BigInteger.ONE; for (BigInteger i = BigInteger.ONE; i.compareTo(n) <= 0; i = i.add(BigInteger.ONE)) { factorial = factorial.multiply(i); } return factorial; }
since factorial is for example , the factorial of 5 = 5 (5-1)(5-2)(5-3)(5-4) that means the last number to subtract from 5 is 4 , which is (n-1) ie the factorial of any number is (n-0)(.............)(n-(n-1)) to write this , 5 REM to calculate the factorial of any number 6 DIM fac AS INTEGER LET fac = 1 10 INPUT "enter the number to find its factorial "; a ' variable a 15 FOR b = 0 TO (a-1) 'numbers that will be subtracted from the " a" 20 c= a -b 'each number in the factorial calculation 25 fac = fac * c 'to compute each multiplication in the factorial 30 NEXT b 35 PRINT 'to leave a line 40 PRINT fac 45 END note this due to some unattained raesons works for numbers 0 to 7
The computational complexity of the recursive factorial method is O(n), where n is the input number for which the factorial is being calculated.
In Prolog, a simple factorial program can be defined using recursion. Here's a basic implementation: factorial(0, 1). % Base case: factorial of 0 is 1 factorial(N, Result) :- N > 0, N1 is N - 1, factorial(N1, Result1), Result is N * Result1. % Recursive case You can query the factorial of a number by calling factorial(N, Result). where N is the number you want to compute the factorial for.
To write a program that calculates the factorial of a number in PHP, you can use a recursive function or an iterative approach. Here’s a simple example using a loop: function factorial($n) { $result = 1; for ($i = 2; $i <= $n; $i++) { $result *= $i; } return $result; } echo factorial(5); // Outputs: 120 This code defines a function that multiplies numbers from 2 up to the given number $n to compute the factorial.
A recursive function is one that calls upon itself until a given result in the original call is met. Take a look at this example. Program Recursion; Uses crt; Var number:longint; Function Factorial(number:longint):longint; Begin if number > 0 then factorial:=number*factorial(number-1) else factorial:=1; End; Begin clrscr; readln(number); writeln(factorial(number)); readln; End. Note how the function factorial calls itself.
' Iterative solution Function iterativeFactorial(ByVal n As Long) As Long Dim factorial As Long = 1 For i As Long = 1 To n factorial *= i Next Return factorial End Function ' Recursive solution Function recursiveFactorial(ByVal n As Long) As Long If n <= 1 Then Return n End If Return n * recursiveFactorial(n - 1) End Function
int factorial(int n) { int i; int f=1; for(i=2;i<=n;++i) f*=i; return f; }
Factorial for number N is N x N-1 x N-2 X N- (N-1). e.g. if you need to calculate factorial for 5 then compute 5 x 4 x 3 x 2 x 1.
A recursive definition is any definition that uses the thing to be defined as part of the definition. A recursive formula, or function, is a related formula or function. A recursive function uses the function itself in the definition. For example: The factorial function, written n!, is defined as the product of all the numbers, from 1 to the number (in this case "n"). For example, the factorial of 4, written 4!, is equal to 1 x 2 x 3 x 4. This can also be defined as follows: 0! = 1 For any "n" > 0, n! = n x (n-1)! For example, according to this definition, the factorial of 4 is the same as 4 times the factorial of 3. Try it out - apply the recursive formula, until you get to the base case. Note that a base case is necessary; otherwise, the recursion would never end.
The factorial f(n) = n * (n-1) * (n-2) * .. 1. For example factorial 5 (written as 5!) = 5 x 4 x 3 x 2 x 1 = 120. The function below returns the factorial of the parameter n. int factorial( int n) { if (n==1) return 1 else return n* factorial( n-1) ; }
The most efficient way to implement a factorial algorithm in a programming language is to use an iterative approach rather than a recursive one. This involves using a loop to multiply the numbers from 1 to the given input number to calculate the factorial. This method is more memory-efficient and faster than using recursion.
// Iterative solution public static final long iterativeFactorial(final long n) { long factorial = 1; for (long i = 1; i <= n; i++) { factorial *= i; } return factorial; } // Recursive solution public static final long recursiveFactorial(final long n) { if (n <= 1) { return n; } return n * recursiveFactorial(n - 1); } // Arbitrary length solution - may take a while, but works on any positive number. public static final BigInteger factorial(final BigInteger n) { BigInteger factorial = BigInteger.ONE; for (BigInteger i = BigInteger.ONE; i.compareTo(n) <= 0; i = i.add(BigInteger.ONE)) { factorial = factorial.multiply(i); } return factorial; }
To calculate the number of zeros in a factorial number, we need to determine the number of factors of 5 in the factorial. In this case, we are looking at 10 to the power of 10 factorial. The number of factors of 5 in 10! is 2 (from 5 and 10). Therefore, the number of zeros in 10 to the power of 10 factorial would be 2.