answersLogoWhite

0

The prefix is actually "circ-" means "around."

User Avatar

Wiki User

9y ago

What else can I help you with?

Related Questions

What is the definition of the prefix circ?

Circ, circum means round about, around.


Does circus have a prefix?

Yes, "circus" does have a prefix. The prefix in "circus" is "circ-" which comes from the Latin word "circus" meaning a circular or elliptical area for public spectacles.


What are 3 words that start with the prefix circum and circ?

Some of the words that begin with the prefix circ are circle circus circuit circlet circuitry


What is the word circ origin?

The word "circ" originates from the Latin word "circus," meaning "circle" or "ring." This Latin term is derived from the Greek word "kirkos," which also means "circle." In English, "circ" is commonly used as a prefix in words related to circular motion or encirclement, such as "circumference" and "circumstance."


What does circ mean in latin or Greece?

need help  


How many degrees can a decagon can rotate onto itself?

A regular decagon can rotate onto itself at angles that are multiples of ( \frac{360^\circ}{10} ), which is ( 36^\circ ). This means it can rotate by ( 0^\circ ), ( 36^\circ ), ( 72^\circ ), ( 108^\circ ), ( 144^\circ ), ( 180^\circ ), ( 216^\circ ), ( 252^\circ ), ( 288^\circ ), and ( 324^\circ ). In total, there are 10 distinct angles (including ( 0^\circ )) at which the decagon can map onto itself.


What is value of tan15' tan195'?

To find the value of (\tan(15^\circ) \tan(195^\circ)), we can use the identity (\tan(195^\circ) = \tan(15^\circ + 180^\circ) = \tan(15^\circ)). Thus, (\tan(195^\circ) = \tan(15^\circ)). Consequently, (\tan(15^\circ) \tan(195^\circ) = \tan(15^\circ) \tan(15^\circ) = \tan^2(15^\circ)). The exact value of (\tan^2(15^\circ)) can be computed, but it is important to note that it will yield a positive value.


What is the value of cos2 67-sin2 23?

To find the value of ( \cos^2 67^\circ - \sin^2 23^\circ ), we can use the identity ( \cos^2 \theta = 1 - \sin^2 \theta ). Since ( \sin 23^\circ = \cos 67^\circ ) (because ( 23^\circ + 67^\circ = 90^\circ )), we have ( \sin^2 23^\circ = \cos^2 67^\circ ). Thus, ( \cos^2 67^\circ - \sin^2 23^\circ = \cos^2 67^\circ - \cos^2 67^\circ = 0 ). Therefore, the value is ( 0 ).


What does the root word circ mean?

Circ-|Circle|Circus|Large public entertainment in a CIRCULAR ArenaI'm Really Sure That This is The Definition.


What is the exact value of sin 165?

The exact value of (\sin 165^\circ) can be calculated using the sine subtraction formula. Since (165^\circ = 180^\circ - 15^\circ), we have: [ \sin 165^\circ = \sin(180^\circ - 15^\circ) = \sin 15^\circ ] The value of (\sin 15^\circ) can be derived from the formula (\sin(45^\circ - 30^\circ)), which gives: [ \sin 15^\circ = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4} ] Thus, (\sin 165^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}).


What is the cofunction of cos 70?

The cofunction of cosine is sine. Therefore, the cofunction of (\cos 70^\circ) is (\sin(90^\circ - 70^\circ)), which simplifies to (\sin 20^\circ). Thus, (\cos 70^\circ = \sin 20^\circ).


What is Cos 15?

The cosine of 15 degrees can be calculated using the cosine subtraction formula: ( \cos(15^\circ) = \cos(45^\circ - 30^\circ) ). This gives us ( \cos(15^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ ). Plugging in the known values, ( \cos 45^\circ = \frac{\sqrt{2}}{2} ), ( \cos 30^\circ = \frac{\sqrt{3}}{2} ), ( \sin 45^\circ = \frac{\sqrt{2}}{2} ), and ( \sin 30^\circ = \frac{1}{2} ), we find that ( \cos 15^\circ = \frac{\sqrt{6} + \sqrt{2}}{4} ).