answersLogoWhite

0

Some of the words that begin with the prefix circ are

circle

circus

circuit

circlet

circuitry

User Avatar

Wiki User

15y ago

What else can I help you with?

Related Questions

What is the definition of the prefix circ?

Circ, circum means round about, around.


What does the prefix circ mean?

The prefix is actually "circ-" means "around."


Does circus have a prefix?

Yes, "circus" does have a prefix. The prefix in "circus" is "circ-" which comes from the Latin word "circus" meaning a circular or elliptical area for public spectacles.


How many degrees can a decagon can rotate onto itself?

A regular decagon can rotate onto itself at angles that are multiples of ( \frac{360^\circ}{10} ), which is ( 36^\circ ). This means it can rotate by ( 0^\circ ), ( 36^\circ ), ( 72^\circ ), ( 108^\circ ), ( 144^\circ ), ( 180^\circ ), ( 216^\circ ), ( 252^\circ ), ( 288^\circ ), and ( 324^\circ ). In total, there are 10 distinct angles (including ( 0^\circ )) at which the decagon can map onto itself.


What is value of tan15' tan195'?

To find the value of (\tan(15^\circ) \tan(195^\circ)), we can use the identity (\tan(195^\circ) = \tan(15^\circ + 180^\circ) = \tan(15^\circ)). Thus, (\tan(195^\circ) = \tan(15^\circ)). Consequently, (\tan(15^\circ) \tan(195^\circ) = \tan(15^\circ) \tan(15^\circ) = \tan^2(15^\circ)). The exact value of (\tan^2(15^\circ)) can be computed, but it is important to note that it will yield a positive value.


What are two words beginning with circ?

circle and circumference. circular, circulatory,


What is the value of cos2 67-sin2 23?

To find the value of ( \cos^2 67^\circ - \sin^2 23^\circ ), we can use the identity ( \cos^2 \theta = 1 - \sin^2 \theta ). Since ( \sin 23^\circ = \cos 67^\circ ) (because ( 23^\circ + 67^\circ = 90^\circ )), we have ( \sin^2 23^\circ = \cos^2 67^\circ ). Thus, ( \cos^2 67^\circ - \sin^2 23^\circ = \cos^2 67^\circ - \cos^2 67^\circ = 0 ). Therefore, the value is ( 0 ).


What is the exact value of sin 165?

The exact value of (\sin 165^\circ) can be calculated using the sine subtraction formula. Since (165^\circ = 180^\circ - 15^\circ), we have: [ \sin 165^\circ = \sin(180^\circ - 15^\circ) = \sin 15^\circ ] The value of (\sin 15^\circ) can be derived from the formula (\sin(45^\circ - 30^\circ)), which gives: [ \sin 15^\circ = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4} ] Thus, (\sin 165^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}).


What is Cos 15?

The cosine of 15 degrees can be calculated using the cosine subtraction formula: ( \cos(15^\circ) = \cos(45^\circ - 30^\circ) ). This gives us ( \cos(15^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ ). Plugging in the known values, ( \cos 45^\circ = \frac{\sqrt{2}}{2} ), ( \cos 30^\circ = \frac{\sqrt{3}}{2} ), ( \sin 45^\circ = \frac{\sqrt{2}}{2} ), and ( \sin 30^\circ = \frac{1}{2} ), we find that ( \cos 15^\circ = \frac{\sqrt{6} + \sqrt{2}}{4} ).


What is the exact value of tan 195?

The exact value of (\tan 195^\circ) can be found using the tangent addition formula. Since (195^\circ) is in the third quadrant, where tangent is positive, we can express it as (\tan(180^\circ + 15^\circ)). This gives us (\tan 195^\circ = \tan 15^\circ), which is (\frac{\sin 15^\circ}{\cos 15^\circ}). Using the known values, (\tan 15^\circ = 2 - \sqrt{3}). Therefore, (\tan 195^\circ = 2 - \sqrt{3}).


What is 19sin(50) divided by sin(40)?

To find the value of ( \frac{19 \sin(50^\circ)}{\sin(40^\circ)} ), we can use the sine function values. Using the sine of complementary angles, ( \sin(50^\circ) = \cos(40^\circ) ). Therefore, ( \frac{19 \sin(50^\circ)}{\sin(40^\circ)} = \frac{19 \cos(40^\circ)}{\sin(40^\circ)} = 19 \cot(40^\circ) ). For an exact numerical value, you can compute ( 19 \cot(40^\circ) ) using a calculator.


cos20+cos140+cos100?

\cos 20^\circ + \cos 140^\circ + \cos 100^\circ = 0 ] Portanto, a soma é 0.