answersLogoWhite

0

I know the refractive index of the different colors of Jell-O are between 1.30-1.40.

John bare

User Avatar

Wiki User

13y ago

What else can I help you with?

Related Questions

How do you use snell's law to find the speed of light in jello?

Snell's law combines trigonometry and refractive indices to determine different aspects of refraction. The law is as follows: (n1)(sinX1) = (n2)(sinX2); where n1 is the refractive index of the first medium, X1 is the angle of incidence (the angle between the incident ray and the normal), n2 is the refractive index of the second medium, and X2 is the angle of refraction (the angle between the refracted ray and the normal). Setting up an experiment using jello and a laser, one can determine the index of refraction in the jello. Shine the laser at an arbitrary angle and record this angle. Then measure the refractive angle seen in the jello (this is the angle between the ray in the jello and the normal). The index of refraction for air is 1.0003. Now substitute all three values into Snell's law and solve for n2, the refractive index of jello. An index of refraction is defined as the speed of light in a vacuum divided by the speed of light in a medium. Once n2 is determine, use the following equation: n2 = c / v. Substitute n2 and the speed of light in a vacuum (which is approximately 299,792,458 meters per second), and solve for v. The value obtained will be the speed of light in jello.


How do you think increasing a medium's index of refraction might affect the angle of refraction?

Increasing the medium's index of refraction will cause the angle of refraction to decrease. This is because light bends more towards the normal as it enters a medium with a higher index of refraction.


How does the angle of refraction change as the index of refraction of the bottom material increases?

As the index of refraction of the bottom material increases, the angle of refraction will decrease. This relationship is governed by Snell's Law, which states that the angle of refraction is inversely proportional to the index of refraction. Therefore, higher index of refraction causes light to bend less when entering a denser medium.


How does increasing a mediums index of refraction affect the angle of refraction?

Increasing the medium's index of refraction causes the angle of refraction to decrease when light passes from a medium with a lower index of refraction to a medium with a higher index of refraction. This is due to the relationship described by Snell's Law, which governs the change in direction of a light ray as it passes from one medium to another.


What is the index of refraction of air at room temperature?

The index of refraction of air at room temperature is approximately 1.0003.


When light passes from a medium with a high index of refraction into a medium with a lower index of refraction which direction does the light bend?

A medium with a higher index of refraction, like diamond, is more dense than the medium with a lower index of refraction, like air. If the ray of light is moving from the less dense medium (lower index of refraction), to a more dense (higher index of refraction) the ray of light bends TOWARDS the normal.


When the mineral uvarovite has an index of refraction of 1.86. calculate the speed of light in this sample of uvarovite?

Use the definition of "index of refraction". In this case, you simply need to divide the speed of light in a vacuum by the index of refraction.


How can the index of refraction for different substances be determined mathematically?

The index of refraction of a substance can be determined mathematically using Snell's Law, which relates the angle of incidence and refraction to the refractive indices of the two substances involved. By measuring the angles of incidence and refraction, the index of refraction can be calculated using the formula n = sin(i) / sin(r), where n is the refractive index, i is the angle of incidence, and r is the angle of refraction.


How to calculate index refraction?

Index of refraction can be calculated using the formula n = c/v, where n is the index of refraction, c is the speed of light in a vacuum, and v is the speed of light in the medium. Just divide the speed of light in a vacuum by the speed of light in the medium to find the index of refraction for that medium.


What is the formula for the index of refraction?

The formula for calculating the index of refraction is n = c/v, where n is the index of refraction, c is the speed of light in a vacuum, and v is the speed of light in the medium.


What is the index of refraction of CR 39?

The index of refraction of CR-39 lens material is approximately 1.498.


How can the critical angle be calculated using the measured index of refraction?

The critical angle can be calculated using the measured index of refraction by using the formula: critical angle arcsin(1/n), where n is the index of refraction of the material.