If your solution is a total of 414g and 3.06% of it needs to be NaCl, then you just take 414 x .0306 = grams of NaCl. The rest of the grams will be from other species in the solution.
To make a 15.00% by mass aqueous solution with NaCl, the mass of NaCl is 255.0g. This means that 15.00g of NaCl is present in every 100.00g of solution. To find the mass of water needed, first calculate the mass of NaCl in the final solution, then subtract this amount from the total mass of the solution (water + NaCl).
It depends how strong a solution you want to make. The molecular mass of NaCl is 58.44, so for a 1 molar solution you would dissolve 58.44 grams in water and make the volume up to 1 litre. For a 0.1 mol solution you'd take 5.844g to a litre, and a 2 mol solution you'd take 116.88g to a litre of water.
To prepare a 4.00 M NaCl solution, first calculate the moles of NaCl in 23.4 g. Then, determine the volume of water needed to make a total volume of 100.0 mL minus the volume of NaCl solution. Add the water to the NaCl to make a 100.0 mL solution.
The amount of NaCl in the final solution is 5g, and the total volume of the solution is 45mL. To find the percent strength, divide the mass of NaCl by the total volume of the solution and multiply by 100: (5g / 45mL) x 100 ≈ 11.1%.
4.84
144liters
The Molecular Weight of NaCl = 58.5 So to make 1L of 4M NaCl solution you need 4*58.5=234g of NaCl So to make 100mL of the above solution you need 23.4 grams of NaCl
50liters
2.5 g of Nacl is to be dissolve in 100ml of water gives 10ppm of Na solution.
We first calculate the amount, in moles, of NaCl that we will need.Amount of NaCl needed = 0.24 x 400/100 = 0.096mol. Mass of NaCl needed = (23.0 + 35.5) x 0.096 = 5.616g So to produce 400ml of 0.24M NaCl solution, accurately add 5.616 grams of NaCl to 400ml of deionised water.
50
50 Liters of the 60% solution.