using a punnett square the parents would have to be Rr and rr
Punnett Squares are used to depict crosses of the parental or P generation and the possible offspring or F1 generation which can be formed from the traits being looked at which are represented by letters such as W for widow's peak, w for none, Y for yellow, y for green, so on and so forth. The diagrams depict the possibility of each offspring inheriting a specific/specific traits. Depending on the number of characteristics being looked at, the punnett square will range in size; the simplest is a 2x2 which states the possibility of offspring have 2 traits (2 traits of parents are being looked at; that is, whether or not parents have a characteristic/feature in relation to the possibility that their offspring will or will not). Ultimately, the outcomes depend on whether or not a trait is dominant, heterozygous, or recessive Dominant traits, represented by uppercase letters, generally overpowers the recessive traits which are represented by lowercase letters. Moreover, phenotypic and genotypic ratios can be found through Punnett Square crosses. Phenotypic ratios refer to the number of offspring with each specific physical characteristic/trait coded for by the different letter combinations and the genotypic ratios refer to the number of offspring with each different code. These ratios are separated by numbers and colons and begin at the top left corner of the square. Make sure to simplify if needed. For example: A homozygous dominant plant (RR) is crossed with a heterozygous round plant (Rr) --> RR x Rr RR x Rr: RR RR Rr Rr Phenotypic Ratio: 1 Round (100% chance of offspring being round) Genotypic Ratio: 1 RR: 1 Rr (50% chance of offspring being RR/Rr)
To figure this out, use a Punnet Square.First, set up a test cross, like this:Rr x rrThis shows what you are crossing. Now you can make a Punnet Square.R rr Rr rr There is a 50/50 chance that the corn plant will have thegenotype rr.r Rr rr
Mendel's pea plant experiments showed that at least two types of alleles (dominant, and recessive) must exist. Lets say for example that a red plant (for argument's sake, homo. dominant, RR) is crossed with a white plant (homo. recessive, rr). Most schools of thought at the time would have believed the result of this cross to be pink plants. This is true in some cases, but this was not what Mendel discovered.Instead, Mendel found the offspring to all the red. The reason?? All of the offspring were heterozygous, meaning they each had one dominant allele, and one recessive allele. (Rr) When this occurs, only the dominant form of the trait (in this case red) will be manifested.When a red plant and a white plant (for example) are crossed and yield a pink plant, the gene is considered to have "incomplete dominance". There is lots more to learn about simple genetics like this, most of which can be learned in a high school biology course as well as first year university biology. I suggest you check it out if you are still interested in learning more.
Because the possible combinations are DD, Dr, rD, and rr. When a dominant gene is present (D), then that gene is selected. The plants only have a one in four chance of getting a rr combo (r being recessive). It must inherit two recessive genes to display that trait.
The little r stands for a recessive wrinkled trait.
When both parents are heterozygous for seed shape (Rr, where R is the allele for round seeds and r is the allele for wrinkled seeds), the probability of producing an offspring with round seeds can be determined using a Punnett square. The possible genotypes are RR, Rr, Rr, and rr. Thus, there are three combinations (RR and Rr) that result in round seeds out of four total combinations. Therefore, the probability of having an offspring with round seeds is 3 out of 4, or 75%.
When crossing two heterozygous red flowers (Rr), you would use a Punnett square to determine the possible genotypes and phenotypes of the offspring. In this case, the genotypes of the parents are Rr x Rr. The possible offspring genotypes would be RR, Rr, and rr, with a phenotypic ratio of 1 red : 2 pink : 1 white flower.
The genotype of the offspring that had the same phenotype as the parents is rr or wrinkled. The phenotype for the seed shape of both parent plants is round.
If round seeds are dominant and wrinkled seeds are recessive, then in a cross between two plants with heterozygous genotypes (Rr), 75% of the offspring will have round seeds (25% RR, 50% Rr) and 25% will have wrinkled seeds (rr).
Rr
Punnett Squares are used to depict crosses of the parental or P generation and the possible offspring or F1 generation which can be formed from the traits being looked at which are represented by letters such as W for widow's peak, w for none, Y for yellow, y for green, so on and so forth. The diagrams depict the possibility of each offspring inheriting a specific/specific traits. Depending on the number of characteristics being looked at, the punnett square will range in size; the simplest is a 2x2 which states the possibility of offspring have 2 traits (2 traits of parents are being looked at; that is, whether or not parents have a characteristic/feature in relation to the possibility that their offspring will or will not). Ultimately, the outcomes depend on whether or not a trait is dominant, heterozygous, or recessive Dominant traits, represented by uppercase letters, generally overpowers the recessive traits which are represented by lowercase letters. Moreover, phenotypic and genotypic ratios can be found through Punnett Square crosses. Phenotypic ratios refer to the number of offspring with each specific physical characteristic/trait coded for by the different letter combinations and the genotypic ratios refer to the number of offspring with each different code. These ratios are separated by numbers and colons and begin at the top left corner of the square. Make sure to simplify if needed. For example: A homozygous dominant plant (RR) is crossed with a heterozygous round plant (Rr) --> RR x Rr RR x Rr: RR RR Rr Rr Phenotypic Ratio: 1 Round (100% chance of offspring being round) Genotypic Ratio: 1 RR: 1 Rr (50% chance of offspring being RR/Rr)
Let take the symbol for red trait "RR" for white "rr" for tall "TT" for short "tt" now as in case of incomplete dominance the red and white parents can give red, white and pink Rr incase of 4 o'clock plant now by crossing to short parents no progeny will be tall so the answer is no,we can not have offspring of red and tall with parents having pink and short traits, but there canb be red offspring with pink parents.
R R r Rr Rr r Rr Rr That is the Punnet Square. The genotype will be 100% Rr in the cross. The phenotype will be whatever phenotype is constituted by your dominant allele.
The resulting generation will have a 1:1 ratio of RR to rr genotypes when crossing an Rr genotype with a rr genotype, as each parent will contribute one allele to the offspring.
All of the offspring will be red, since each of the four offspring receive the dominant red allele (R). Therefore, the offspring will all have the genotype Rr and a phenotype of red.
In the case of selfing an Rr individual - which is heterozygous - you would expect 50% of the offspring to be heterozygous (Rr), as each parent contributes one allele to the offspring. Each allele has a 50% chance of being passed on.
The backcross between a heterozygous (monohybrid) red flower plant (Rr) and a homozygous recessive white flower plant (rr) would produce a ratio of 1Rr:1rr. So you would expect half of the offspring to be red (Rr) and half the offspring to be white (rr).