If the weight of the object is higher than the buoyant force the object SINKS. And the opposite happens if the weight is lower than the buoyant force. If it is equal, the object neither sink nor float, it is neutrally buoyant.
Since the object is submerged, we know that the buoyant force is not sufficient to overcome the weight of the object, otherwise it would be floating rather than being submerged. Therefore, the buoyant force is equal to the weight of the displaced water, not the weight of the object itself.
The upward buoyant force is simply equivalent to the weight of an amount of the fluid that would occupy the same space (same volume). The total upward force on the body, if freely floating, would be found by subtracting the downward force of the body's own weight. So for example, the buoyant force on a balloon filled with air submerged in water would be equal to the weight of the same-size balloon filled with water suspended in air.
accelerates upward, and may shoot up out of the water.If the buoyant force is equal to the force of gravity, then the object floats right there.
buoyant force is the result of the displacement of the fluid an object is in. if a fluid is displaced by the volume of an object, the weight of the fluid being displaced is pushing up on that object
If you just set the object in the water, the buoyant force never becomes greater than the object's weight. It sinks and sinks, displacing more and more water, building up more and more buoyant force, until the buoyant force is equal to its weight. At that point, the net force on it is zero, it stops sinking, and it stays right there (floating). The only way you can produce a buoyant force greater than its weight is to force it further down and hold it there. Since the buoyant force is greater than its weight, as soon as you let go, the net force on it is up, and it'll rise, partly out of the water until the buoyant force drops to equal its weight, and again ... it'll stay right there. So the answer to the question is: An object can't stay indefinitely in a position where the buoyant force is greater than its weight. If that happens, then it lifts some of itself out of the water, reducing the buoyant force, until the buoyant force is again just equal to its weight.
The upward force acting on an object submerged in a fluid is called buoyant force. It is equal to the weight of the fluid displaced by the object.
The buoyant force is zero when the object is just touching the liquid. As the object displaces more volume, the buoyant force increases until the object is completely submerged. Once the object is submerged, it doesn't matter how deep it is, the buoyant force remains constant.
Archimedes' Principle is the scientific law that predicts the amount of buoyant force on a submerged or floating object. It states that the buoyant force on an object is equal to the weight of the fluid displaced by the object.
When the pressure at the bottom of a submerged object is greater than the pressure at the top, a buoyant force is produced. This buoyant force is a result of the difference in pressure creating an upward force on the object, known as buoyancy, which helps keep the object afloat.
The buoyant force on any object in water is equal to the weight of the displaced water, regardless of how much of the object is submerged.
The buoyant force on a submerged object depends on the volume of the object. It is equal to the weight of the fluid displaced by the object, which is determined by its volume. The weight of the object itself affects the net force experienced by the object when submerged.
To calculate the buoyant force acting on an object submerged in water, you can use the formula: Buoyant force = Weight of the water displaced = Weight of the object in air - Weight of the object in water. This formula considers that the buoyant force is equal to the weight of the water displaced by the object.
Buoyant force acts upward on an object submerged in water due to the difference in pressure exerted by the water at different depths. The pressure at greater depths is higher, leading to a greater force pushing upward on the object, thus creating the buoyant force that opposes gravity. This buoyant force helps objects float or experience less weight when submerged in water.
greater than
The buoyant force on any object in a fluid ... whether partially or fully submerged ... isequal to the weight of the fluid displaced by the object. That's related to the object'svolume, and has nothing to do with its weight.
The buoyant force on the chamber is the upward force exerted by a fluid on an object submerged in it, equal to the weight of the fluid displaced by the object.
No.