answersLogoWhite

0

wherever the Schwann cells wrap around the axon, the sodium and potassium ions cannot cross the membrane; the Schwann cells wrap too tightly around the axonal membrane for there to be any extracellular space underneath them. Therefore, the only place that an action potential can occur is at the node of Ranvier-- the space between the Schwann cells. Because of this, the action potential seems to jump from node to node along the axon. "Jumping" is what the word "saltatory" means.

User Avatar

Wiki User

14y ago

What else can I help you with?

Related Questions

Would conduction speed of a nerve fiber be the fastest in a large or small myelinated fiber?

The conduction speed of a nerve fiber is fastest in large myelinated fibers. This is because myelin acts as an insulator, allowing for faster propagation of the action potential by saltatory conduction in large fibers compared to small unmyelinated fibers.


Does an unmyelinated fiber conduct impulses faster than a myelinated fiber?

False


What are the factors which affect the nerve conduction velocity?

The factors affecting nerve conduction velocity are as follows:(i) Axon diameter:An axon with a larger diameter conducts faster. In an unmyelinated fiber, the speed of propagation is directly proportional to the square root of the fiber diameter (D), i.e.,Conduction velocity a D(ii) Myelination and saltatory conduction:Myelination speeds up conduction. Thus, the action potential travels electrotonically along the long myelinated segments, and fresh action potentials are generated only at the nodes. This is called saltatory conduction. In a myelinated neuron, the conduction velocity is directly proportional to the fiber diameter (D).(iii) Temperature:A decrease in temperature slows down conduction velocity, (iv) Resting membrane potential. Effect of RMP changes on conduction velocity is quite variable. Usually, any change in the RMP in either direction (hyper polarization or depolarization) slows down the conduction velocity.


Area where action potentials are generated during saltatory conduction?

Action potentials are generated at the nodes of Ranvier during saltatory conduction. These nodes are the non-myelinated gaps found along the axon where the action potential can occur, allowing for faster transmission of the electrical signal down the nerve fiber.


What does saltatory mean?

"Saltatory" typically refers to a process or movement that is characterized by jumping or leaping. In biology, it can refer to saltatory conduction, in which nerve impulses jump between nodes of Ranvier along a myelinated nerve fiber.


What is the advantage of saltatory conduction in nerve impulses?

The advantage of saltatory conduction in nerve impulses is that it allows for faster transmission of signals along the nerve fibers. This is because the electrical impulses "jump" from one node of Ranvier to the next, rather than traveling continuously along the entire length of the nerve fiber. This speeds up the transmission of signals and conserves energy for the nerve cell.


What reasons may explain difference in conduction rates?

Differences in conduction rates can be attributed to variations in fiber size, myelination, and temperature. Larger fibers conduct signals faster due to less resistance, while myelination increases conduction speed by allowing for saltatory conduction. Temperature can also affect conduction rates, as higher temperatures increase the speed of ion channel activation.


COnduction speed of a nerve fiber would be the fastest in a?

Myelinated nerve fiber with a large diameter would have the fastest conduction speed. The myelin sheath allows for saltatory conduction, where the action potential jumps from one node of Ranvier to the next, speeding up conduction. A large diameter also reduces resistance to current flow, further increasing conduction speed.


Which nerve fiber do impulses travel slowly?

Unmyelinated nerve fibers conduct impulses more slowly than myelinated nerve fibers. Myelinated nerve fibers have a fatty substance called myelin sheath that allows for faster transmission of impulses compared to unmyelinated fibers without this sheath.


What is the difference in transmission between myelinated and unmyelinated fibers?

Impulse transmission on an unmyelinated nerve fiber is much slower than the impulse transmission on a myelinated nerve fiber.


In a myelinated fiber only the initial segment in the trigger zone have voltage-regulated channels?

In a myelinated fiber, voltage-regulated channels are concentrated at the nodes of Ranvier along the axon. These nodes are where action potentials are regenerated, allowing for faster conduction of the electrical signal compared to unmyelinated fibers. The initial segment before the first node acts as the trigger zone for action potential initiation.


A myelinated nerve fiber is characterized as being whereas an unmyelinated?

Myelinated nerves are white, and composes the white matter of the brain and spinal cord they also are able to pass an action potential down an axon much faster; Unmyelinated nerves are gray, and composes the gray matter of the brain and spinal cord. These nerves transmit signals much slower