answersLogoWhite

0


Best Answer

Well, i'd say its both. depends on the case to specify when it is a force multiplier or a distance multiplier.

User Avatar

Wiki User

10y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

12y ago

Force multiplier

This answer is:
User Avatar
User Avatar

Rachel Riedlinger

Lvl 1
1y ago
bad

User Avatar

Anonymous

Lvl 1
4y ago

Your arm is a lever. It is a distance multiplier.

This answer is:
User Avatar
User Avatar

Georja delange

Lvl 1
2y ago
false

Add your answer:

Earn +20 pts
Q: Is the arm lever a distance multiplier or a force multiplier?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about General Science

What does it mean if a lever is at a mechanical disadvantage?

A lever at a mechanical disadvantage exerts a smaller force on the output arm than is exerted on the input arm; if you push with 10N on a lever with a disadvantage of 2, the other arm only exerts a 5N force. However, a lever with a mechanical disadvantage exerts the smaller force over a greater distance. Trebuchets are one example of a mechanically disadvantaged lever: the fairly small projectile doesn't need a huge force to propel it, and the greater distance afforded by the lever allows it to travel at great speed.


What is output arm?

The end of a lever that carries the load is the output arm instead of the input arm which is the end of a lever that force is applied to move the load.


Where are the load effort and fulcrum located on a second class lever?

No, the function of the fulcrum remains the same The only change would be the ratio of force to load The closer the fulcrum is the the load, the less force required to lift it The farther away the fulcrum is from the load, the more force required to lift it


How does a car jack multiply a force?

A car jack is able to multiply force by multiplying the torque. A car jack combines two types of simple machines, a screw and the wheel and axle. For the car jack the wheel handle is very similar to lever handle. When you add force to the lever hand on the car jack that force is transferred to the turning rod. According to simple lever physics the longer the lever arm the more the force is multiplied. So if a lever arm 1ft long, with 1lb of force applied exerts 1ft /lbs of torque, what happens when the lever arm is 2ft? Just by doubling the length of the lever arm to 2ft we now double the force to 2ft/lbs of torque. That torque in the rod is translated to the screws which pull the jack together to lift up the car. The screw also is a simple machine(an inclined planed curved on itself) which multiples the force(torque) from the lever. The more screw grooves per unit of length the more the force is multiplied. So comparing a jack that has 20 screw grooves per every 1ft to one that has 40 screw grovers per every 1ft, the one with 40 grooves would be multiplying the force twice as much. So if the 20 screw groove is multiplying the torque 100times the 40 grooves would be multiplying it 200times. The beauty of a screw as a force multiplier comes in understanding that it is an incline plane curved on itself. Understanding how an incline plane multiples force helps to better understand the screw. Imagine trying to pick up a 100lb box and put it on a 5ft ledge. It would take over 100lbs to over lift it straight up onto the ledge. Now imagine we add a plank that we can slide the weight onto. This plank is 5ft long, we place it on the ground and on the tip of the ledge. The plank will have a slope of 1(rise)/ 1(run), which is one. That is because it rises one foot up for every foot of distance it spans. If we wanted to make our task easier and multiply our force even more we could make the plank even longer, making it 50 feet would give us a slope of 5(rise)/(50)run or 1/10 or 0.1 . This gives us a very long slope and we can exert way less force(though we need to exert it for a longer time) to move the 100lbs. For example if a 10 year old can only exert 25lbs of force, that 25lbs of force may now be enough to move the 100lbs given a 5ft plank providing a slope of 1 rise/1 run. We provide the 50ft plank to assist in the job, the 10 year old is still only exerting 25lbs of force but the longer plank (inclined plane) acts as a force multiplier and may multiply his 25lbs of force by 10 allow him to move the 100 lbs given a long slope. That is the essence of how a car jacks uses a screw and level to multiply force. -WNL


How is it possible for a smaller force to hava a large torque?

Yes, it is possible for a smaller force to have a large torque because it is usually located at a much greater distance from the center of rotation. Torque is calculated by multiplying the distance by the force.

Related questions

The product of force and lever-arm distance in producing rotation is?

In a lever, the product of effort and effort arm is called Moment of effort and product of load and load arm is called Moment of load. In general case, as asked in the question, "The Product of force and lever-arm distance is called Moment of Force"the Moment of Force isn't correct its {Torque}


How do you calculate a lever's mechanical advantage?

From the design of the lever (on paper), the mechanical advantage is effort arm/load arm which means Distance from pivot to the applied force/distance from pivot to the load The result of that is that the forces will have the reciprocal ratio, and the input force to the lever will be the output force/the Mechanical Advantage .


In what class lever is the resistance arm always longer than the force arm?

The class 3 lever always has a longer resistance arm than the force arm. This is because the distance from the Fulcrum to the load/resistance is always going to be further that the fulcrum to where the effort/force is applied. If you look at a diagram of a 3rd class lever, you will be able to see why this is.


What's a lever used for?

A lever is a simple machine that uses variable distance to multiply force, or to redirect existing forces. With a lever, the force exerted by gravity on a weight can be used to lift another weight. By varying the distance between a lever's ends and its fulcrum, a heavy object can be lifted a short distance by a smaller force moving a longer distance.


Can a force produce a torque when there is no lever arm?

no because to get a torque you must multiply lever arm by force. If lever is zero, then torque is zero


What the force that pushes on one arm of a lever?

The answer is the force


What is the force that pushes on one arm of a lever?

The answer is the force


Why is a lever a force multiplier?

The transmission lever is very simple and there is no friction.


What does it mean if a lever is at a mechanical disadvantage?

A lever at a mechanical disadvantage exerts a smaller force on the output arm than is exerted on the input arm; if you push with 10N on a lever with a disadvantage of 2, the other arm only exerts a 5N force. However, a lever with a mechanical disadvantage exerts the smaller force over a greater distance. Trebuchets are one example of a mechanically disadvantaged lever: the fairly small projectile doesn't need a huge force to propel it, and the greater distance afforded by the lever allows it to travel at great speed.


What is lever arm ratio?

Divide the length of the force arm by the length of the resistance arm.


In a second class lever why must you exert input force over a greater distance?

If the input force is applied at a greater distance than the length of the effort arm is increased thereby reducing the effort.


Is a crowbar a Force Magnifier or a Distance Magnifier?

Force magnifier... It's basically a lever which pivots around the sharp bend in the metal. This amplifies the force applied to the long arm.