answersLogoWhite

0

Dispersion, the separation of visible light into a spectrum, may be accomplished by means of a prism or a diffraction grating. Each different wavelength or frequency of visible light corresponds to a different color, so that the spectrum appears as a band of colors ranging from violet at the short-wavelength (high-frequency) end of the spectrum through indigo, blue, green, yellow, and orange, to red at the long-wavelength (low-frequency) end of the spectrum. In addition to visible light, other types of electromagnetic radiation may be spread into a spectrum according to frequency or wavelength. The spectrum formed from white light contains all colors, or frequencies, and is known as a continuous spectrum. Continuous spectra are produced by all incandescent solids and liquids and by gases under high pressure. A gas under low pressure does not produce a continuous spectrum but instead produces a line spectrum, i.e., one composed of individual lines at specific frequencies characteristic of the gas, rather than a continuous band of all frequencies. If the gas is made incandescent by heat or an electric discharge, the resulting spectrum is a bright-line, or emission, spectrum, consisting of a series of bright lines against a dark background. A dark-line, or absorption, spectrum is the reverse of a bright-line spectrum; it is produced when white light containing all frequencies passes through a gas not hot enough to be incandescent. It consists of a series of dark lines superimposed on a continuous spectrum, each line corresponding to a frequency where a bright line would appear if the gas were incandescent. The Fraunhofer lines appearing in the spectrum of the sun are an example of a dark-line spectrum; they are caused by the absorption of certain frequencies of light by the cooler, outer layers of the solar atmosphere. Line spectra of either type are useful in chemical analysis, since they reveal the presence of particular elements. The instrument used for studying line spectra is the spectroscope.

User Avatar

Wiki User

17y ago

What else can I help you with?

Continue Learning about Physics

Why do different elements have different line spectra and not a continuous spectrum of light?

Different elements have different line spectra because each has a unique arrangement of energy levels for its electrons. When electrons transition between these energy levels, they emit or absorb specific wavelengths of light, creating distinct lines in the spectrum. This results in discrete lines rather than a continuous spectrum.


What is main difference between prism spectrum and grating spectrum?

Prism spectrum is formed due to DISPERSION but grating spectrum is formed due to DIFFRACTION. In prism spectrum we have only one order but in grating spectrum we can have second order too IN prism spectrum we have continuous spectrum but in gratings we have only line spectrum In prism spectrum red end will be closer to the direct ray but in grating spectrum violet end will be closer to the direct ray


Why is the emission spectrum of hydrogen a line spectrum and not a continuous spectrum?

It's a line spectrum because of the quantization of energy- meaning you only see energy with levels n=1,2,3.... One would never see the energy level n=2.8 for instance- that would be the case if it were continuous rather than a line spectrum.


Why elements give line spectrum?

Because the spectra of elements is determined by the energy of transitions of electrons between two allowed quantum states. Since these energy differences can have only certain specified values, the spectrum consists of lines: The spectrum frequency values intermediate between the lines do not correspond to transitions between any two allowed quantum states and therefore do not appear in the spectrum


Is an atomic emission spectrum a continuous range of colors?

No, an atomic emission spectrum is not a continuous range of colors. It consists of discrete lines of specific wavelengths corresponding to the emission of light from excited atoms when they return to lower energy levels. Each element has a unique atomic emission spectrum due to its unique arrangement of electrons.

Related Questions

What is the difference between a continuous spectrum and a line spectrum in terms of the emission of light?

A continuous spectrum shows a wide range of colors emitted by a hot, dense object, while a line spectrum displays only specific colors at distinct wavelengths emitted by atoms or molecules.


Why does in line spectrum there is spaces between spectrum whereas in continuous it is not so?

In case of continuous spectrum we have all sorts of frequencies. This ensures that probability of transfer of electrons at various energy levels are equally available. But in case of line spectrum it is some how a characteristic which is restrained with the transfer of electrons in specified energy levels.


Continuous spectrum with dark lines where light is absorbed?

dark-line spectrum...


What is the difference between sunlight produced spectrum and hydrogen gas produced spectrum?

Sunlight produced spectrum is continuous and contains a broad range of wavelengths, while hydrogen gas produced spectrum consists of discrete lines at specific wavelengths due to the unique energy levels of hydrogen atoms. Sunlight spectrum is continuous due to the various processes that produce light, whereas hydrogen gas spectrum is a result of the energy levels of hydrogen atoms emitting photons of specific wavelengths.


What are the two types of spectrum?

The two types of spectrum are continuous spectrum, which shows a continuous range of colors with no gaps, and line spectrum, which consists of distinct lines of color separated by gaps.


Why is there a line spectrum over a continuous spectrum in a spectroscope?

The lines in a spectroscope tell what element(s) are being observed. The continuous color are background noise or put there for a reference.


Why do different elements have different line spectra and not a continuous spectrum of light?

Different elements have different line spectra because each has a unique arrangement of energy levels for its electrons. When electrons transition between these energy levels, they emit or absorb specific wavelengths of light, creating distinct lines in the spectrum. This results in discrete lines rather than a continuous spectrum.


What is the difference between line art and continuous tone?

line art is like clip art. it is art created only with lines. continuous tone art is art that uses a tonal range such as a photograph.


What is main difference between prism spectrum and grating spectrum?

Prism spectrum is formed due to DISPERSION but grating spectrum is formed due to DIFFRACTION. In prism spectrum we have only one order but in grating spectrum we can have second order too IN prism spectrum we have continuous spectrum but in gratings we have only line spectrum In prism spectrum red end will be closer to the direct ray but in grating spectrum violet end will be closer to the direct ray


How are the continuous bright line spectrum and spectral lines similar?

In a continuous spectrum, you see every color in visible light from wavelengths around 380 nm to 780 nm. The bright light spectrum has only light at specific wavelengths, forming narrow regions of lights. This is characteristic of a particular substance, emitting these lights from its unique electron configuration. Light at specific wavelengths is emitted for different substances, but not a continuous rainbow.


The spectrum produced by glowing high-density gas is an a bright line emission b dark line absorption c chemical composition d temperature c continuous?

a Edit: The question is very mixed up, but I think I get the idea. It's obviously an emission spectrum. Because it is a high density gas the spectrum should be CONTINUOUS.


What is the difference between a dot and a point?

a dot is the smallest point whereas a line can be assumed to be a collection of points or dots for eg- a dot is - " . " and a line (continuous dots) is " ................................. "