NAD is a coenzyme that plays a key role in cellular energy production, while NAD is the oxidized form of NAD that is involved in various metabolic processes in the body.
NAD+
Fermentation allows glycolosis to take place. Glycolysis is a process during which, 2 ATP are used to produce 4 ATP, for a net profit of 2 ATP. When oxygen is not present, fermentation allows Glycolysis to continue by creating 2 ATP which are then used to restart the process of glycolysis. Even though the amount of ATP created is small, the process is still able to continue.
The oxidized form of Nicotinamide Adenine Dinucleotide (NAD) is NAD+. NAD+ is a coenzyme involved in redox reactions, accepting electrons and becoming reduced to NADH. NAD+ plays a crucial role in cellular respiration and energy production in organisms.
ATP
yes
Yes, NAD (nicotinamide adenine dinucleotide) is an example of a coenzyme. It plays a crucial role in various metabolic processes by carrying and transferring electrons during redox reactions in the cell.
Its something to do with glycolosis.
Well for people who aren't familiar with the abbr. Nicotinamide adenine dinucleotide aka NAD acts as an electron and hydrogen carriers in some oxidation-reduction reactions in the Krebs Cycle, and flavin adenine dinucleotide aka FAD is a hydrogen acceptor molecule in the Krebs Cycle.
No, it's not, lysosome only digest unfunctioned organelle, while the ATP is produced by mitochondrion
NADH+ provides electrons for the é transport chain.
If there is no oxygen available after glycolysis, anaerobic respiration occurs. This process involves the conversion of pyruvate into lactic acid (in animals) or ethanol (in yeast and some bacteria) to regenerate NAD+ and continue ATP production. Anaerobic respiration is less efficient than aerobic respiration in terms of ATP production.