The mother has two defective X chromosomes for color. The father has a normal X (and Y).
If they have children and they are girls, the girls will have one defective X and a normal X. That normal X from dad will be enough so she will see color.
If a boy, he will have a defective X and a normal Y but will be color blind. Only in the case of one normal X and a defective X would a child have normal vision. The Y chromosome doesn't have any genes for color.
If Mary's mother is colorblind, and therefore carries the colorblind gene on one of her X chromosomes, then Mary would inherit that gene as well. If Mary's father is colorblind, he would have to pass on his X chromosome with the colorblind gene to Mary, making her colorblind too. If only Mary's mother is colorblind, Mary's father is likely not colorblind.
Color blindness is a sex-linked trait that is carried on the X chromosome. Since males inherit their single X chromosome from their mother, if the mother carries the allele for color blindness, her son will inherit it and be colorblind. Females need two copies of the allele to be colorblind, so they can be carriers without exhibiting the trait.
100
Father
It is called x-linked alleles. It is rare for a female to have color blindness because the allele must be passed from both parents. Males only need one allele to be color blind.With the equation, color blind female and non-color blind male reproduce. Each son has a 50% chance of developing the disorder.
If the mother is a carrier of the colorblind gene (XcX) and the father has normal color vision, the probability of their child being colorblind is 50%. This is because the child has a 50% chance of inheriting the Xc chromosome from the mother and developing colorblindness.
The father has to be colorblind for the daughter to be colorblind because both X chromosomes must have the colorblindness gene in females because the colorblind gene is recessive. If only the mother is color deficient, then she merely passes on the gene to one of the X chromosomes in a female. If both the mother and father are both colorblind, then both X chromosomes in the female are effected and the female is colorblind. There are two scenarios in which a daughter may be born colorblind. 1. The father is colorblind and the mother is a carrier of the colorblind gene. The daughter will be either colorblind or a carrier of the colorblind gene. 2. The father and mother are both colorblind. If this is the case, then all of the children will be born colorblind.
alota peeple think yur stupid
there is a 50% chance that the child will be colorblind. If it is a boy, it will be colorblind, but if it is a girl, it will only be a carrier. Mother's chromosome is XrXr and Father's Chromosome is XRY, which means the children's genotypes will be XRXr if girl and XrY if a boy.
50%
We know that if a father is colorblind and the mother is neither colorblind nor a carrier, then the sons will not be colorblind. So, using logic, that means that the father can't cause a son to become colorblind. Process of elimination would point towards whenever a son is colorblind that it comes from the mother. A diagram explaining how colorblindness is inherited can be viewed in the related links.
In short, hemophilia has nothing to do with colorblindness, but YES, they could have a colorblind child if she is a carrier for the colorblindness gene. Color blindness is an X-linked trait. That means it is carried in the X chromosome, which differentiates whether a baby will be a girl or a boy. Women have two X chromosomes (XX), and men have an XY combination. If a woman is a carrier for color blindness, only one of her chromosomes will be affected (we'll call it a little "x"), and for that reason she will not be colorblind. Men, on the other hand, only have one X chromosome, so any time they carry the colorblindness gene, they will be colorblind. A woman will carry the colorblindness gene if: a. Her father is colorblind b. Any of her offpsring are colorblind She may carry the colorblindness gene if: a. Male family members (brothers, uncles, etc.) are colorblind A child inherits one chromosome from each parent. He/She will get an X chromosome from his/her mother, and an X from her father (if a girl) or a Y from his father (if a boy). So, If a woman has normal vision (assuming she does not have a family history of colorblindness), XX, and a man is colorblind, xY, they have several different chances for different offspring: Xx (a normal girl who carries the colorblindness gene) XY (a normal boy) Xx (a normal girl who carries the colorblindness gene) XY (a normal boy) The short answer is that ALL CHILDREN WILL HAVE NORMAL VISION. However, all daughters will be CARRIERS, meaning they can pass colorblindness on to their children.