A normal homozygous individual can't produce offspring with sickle cell anemia. Both parents must carry the trait to have an offspring with the illness.
The offspring has a 50% chance of the dominate trait (while being heteroygous) and a 50% chance of having the recessive trait ( homozygous recessive).
The probability that an individual heterozygous for a cleft chin and an individual homozygous for a chin without a cleft will produce offspring that are homozygous recessive for a chin without a cleft is fifty percent. You can calculate this by making a Punnet square.
The offspring will all inherit one copy of the dominant allele (from the heterozygous parent) and one copy of the recessive allele (from the homozygous recessive parent). This results in all offspring being heterozygous for the trait.
There are two forms of Homozygous inheritance: Homozygous Dominant, and Homozygous Recessive. In order for two parents that are Homozygous to produce a Heterozygous offspring, one of them MUST be Homozygous Dominant, and the other MUST be Homozygous Recessive.
A cross between two individuals that are homozygous for different alleles will only produce heterozygous offspring. This is because each parent can only donate one type of allele, resulting in all offspring being heterozygous for that particular gene.
Organisms or genotypes that are homozygous for a specific trait and always produce offspring of the same phenotype are said to be true breeding. This means that when bred with another organism of the same genotype for that trait, all offspring will display the same characteristic.
Only a homozygous recessive individual will have the phenotype created by two recessive alleles.Since the term produce might indicate the production of offspring parents that can only produce offspring with a recessive phenotype must both have homozygous recessive genotypes.
homozygous recessive
When the radish is heterzygous for shape The radish is oval.
Homozygous individuals have two identical alleles for a particular trait. True-breeding individuals are homozygous for a trait and will always pass on that trait to their offspring. So, if an individual is homozygous for a particular trait and true-breeding, it means that all of its offspring will also express that same trait.
True-breeding
A heterozygous genotype (e.g. Aa) is not true-breeding because it carries two different alleles for a trait and can produce offspring with different genotypes when crossed. True-breeding genotypes are homozygous for a particular trait (e.g. AA or aa) and will consistently produce offspring with the same genotype when crossed.