Communication across a synapse is initiated by the release of a neurotransmitter from the axon terminal of the presynaptic neuron. When an action potential reaches the axon terminal, it triggers the influx of calcium ions, leading to the fusion of neurotransmitter-containing vesicles with the presynaptic membrane. This process causes the neurotransmitters to be released into the synaptic cleft, where they bind to receptors on the postsynaptic neuron and facilitate communication.
Chemical Synapse
exocytosis
no
affecting neurotransmitter release, blocking neurotransmitter reuptake, or binding to neurotransmitter receptors. This alters the signaling between neurons and can have various effects on mood, behavior, and other physiological processes.
When an action potential reaches the nerve terminal, it triggers the release of neurotransmitters into the synapse.
The answer is NEUROTRANSMITTER.
A synapse, chemical signals called neurotransmitters cross these gaps, carrying on the signal.
no, synapse. node of ranvier is between axon and dendrites
The determination of whether a synapse is excitatory or inhibitory is based on the type of neurotransmitter released at the synapse. Excitatory synapses release neurotransmitters that promote the firing of the receiving neuron, while inhibitory synapses release neurotransmitters that prevent the firing of the receiving neuron.
No, a synapse is a specialized junction between two neurons where communication occurs through the release of neurotransmitters. Each synapse allows for communication between one presynaptic neuron and one postsynaptic neuron.
There are many kinds of synapses in the nervous system, but I assume you're talking about the most commonly discussed type: the chemical synapse. These synapses join nerve cells (called neurons) and allow them to communicate.Communication across a chemical synapse is called synaptic transmission. It occurs when electrical activity (called an action potential) in the first cell triggers the release of a chemical signal (called a neurotransmitter) across the synapse. The neurotransmitter travels across the synapse by a process of diffusion, ultimately reaching its target, the second cell. There, the neurotransmitter binds a special type of protein molecule called a neurotransmitter receptor, which changes its shape in response to binding the neurotransmitter. This shape change results in a series of subsequent changes in the second cell. These subsequent changes result in alterations in the electrical activity of the second cell.The gist of synaptic transmission is that it allows the electrical activity in one nerve cell to influence the electrical activity of another.
Chemical synapses are specialized junctions through which neurons signal to each other and to non-neuronal cells such as those in muscles or glands. At a chemical synapse, one neuron releases a neurotransmitter into a small space (the synapse) that is adjacent to another neuron.