A point mutation can affect the protein in a different ways. If the point change causes a silent mutation then it doesnt affect at all. When the point nucleotide change make a different amino acid, then it may alters the function of protein. If it make to forma a stop codon (TAA, TAG, TGA) then the protein synthesis stops at the point where it is changed.
a mutation in a gene that does not affect the downstream genes in an operon. ie. a polar mutation is one that DOES affect the transcription or translation of genes in the same operon downstream of your gene of interest.
Yes, a frameshift mutation will almost always result in a change in the final protein because it disrupts the reading frame of the genetic code, leading to a shift in the sequence of amino acids that are incorporated into the protein. This can have significant effects on the structure and function of the protein.
A point mutation, in which one nitrogen base in a codon is substituted for another, may have no effect on an organism. This is true if the base substitution does not change the amino acid that the codon represents, or if the mutation occurs in a non-critical location in the protein so that the protein's structure is not changed significantly and the protein is still able to function.
No, a DNA mutation does not always result in a change to the protein. Some mutations are silent and do not affect the protein's function.
If only one amino acid is coded incorrectly in a protein sequence, it may result in a missense mutation. This could potentially lead to a change in the structure and function of the protein. The impact of the mutation would depend on the specific amino acid involved and its location within the protein.
A change in a gene could involve a mutation that alters the DNA sequence, affecting the function of the protein it codes for. A change in a chromosome could involve alterations in the structure, number, or distribution of genetic material, leading to genetic disorders or diseases.
A random change in the base sequence of DNA resulting in the production of a defective protein is called a mutation. Mutations can lead to changes in the amino acid sequence of a protein, affecting its structure and function.
This type of mutation is called a missense mutation. It can lead to a change in the protein or enzyme's structure and function, possibly affecting its biological activity. The impact of the mutation can vary depending on the specific amino acid substitution and its location within the protein.
The mutation that typically causes the most drastic change in a polypeptide is a nonsense mutation, where a single nucleotide change creates a premature stop codon. This results in the truncation of the polypeptide chain, often leading to a nonfunctional protein. In contrast, missense mutations may result in a single amino acid change, and silent mutations do not alter the protein at all. The early termination of translation due to a nonsense mutation can severely impact the protein's structure and function.
The point mutation in the sex cell of the rabbit could lead to a change in the amino acid sequence of the protein responsible for building heart muscles. If this mutation alters the protein's structure or function, it could result in compromised heart muscle development or function in the offspring. However, if the mutation is silent or does not significantly affect protein function, the offspring may not exhibit any noticeable heart issues. Overall, the most likely effect would depend on the specific nature of the mutation and its impact on protein function.
When a mutation does not change the result of a normal production of a protein is called harmless. This is because it does no harm to the individual.