taken up; -5 mmHg
Blood colloid osmotic pressure
Net hydrostatic pressure decreases along the length of a capillary due to resistance and filtration of fluid out of the capillary. In contrast, net osmotic pressure remains relatively constant along the capillary length, as proteins and solutes that contribute to osmotic pressure do not leave the capillary as easily.
Hydrostatic and osmotic pressure.
The Net Filtration Pressure (NFP) at the glomerulus is the difference between the net hydrostatic pressure and the blood colloid osmotic pressure acting across the glomerular capillaries. Under normal circumstances we can summarize this as NFP = NHP - BCOP or NFP = 35mm Hg - 25 mm Hg = 10mm Hg This is the average pressure forcing water and dissolved materials out of the glomerular capillaries and into the capsular spaces.
is the force responsible for moving fluid across capillary walls. It is the difference between net hydrostatic pressure and net osmotic pressure. NFP= Net hydrostatic pressure - net osmotic pressure
Filtration results when nutrients are moved through the capillary walls by hydrostatic pressure. Hydrostatic pressure in the capillaries is greater than the osmotic pressure so there is a net movement of fluid and/or solutes out of the capillaries.
Water and dissolved substances leave the arteriole end of the capillary due to hydrostatic pressure being higher than osmotic pressure and enter the venule of the capillary due to osmotic pressure being higher than hydrostatic pressure.
Hydrostatic pressure(inside capillary) is higher than osmotic pressure it re-enters the capillary on venule end because inside the hydrostatic pressure is now lessthan osmotic pressure drawing water back in
is the force responsible for moving fluid across capillary walls. It is the difference between net hydrostatic pressure and net osmotic pressure. NFP= Net hydrostatic pressure - net osmotic pressure
osmotic and hydrostatic forces
The net inward pressure in venular capillary ends is less than the net outward pressure in arteriolar ends of capillaries because of two main factors: the hydrostatic pressure and the osmotic pressure. In venular capillary ends, the hydrostatic pressure is reduced due to the resistance of the venous system, while the osmotic pressure remains constant. In arteriolar ends, the hydrostatic pressure is higher due to the force exerted by the heart and the osmotic pressure remains the same. As a result, more fluid is filtered out of the capillaries at the arteriolar ends than is reabsorbed at the venular ends.
The most important plasma protein for the blood's colloid osmotic pressure is albumin.