transverse tubules
In a normal heart, the electrical impulse resulting in depolarization and contraction of the cardiac muscle originates in the sinoatrial (SA) node and propagates through the atria to the atrioventricular (AV) node before moving on to the ventricles. When the electrical impulse for muscle contraction is generated, it travels throughout the muscle of each atrium, causing atrial contraction. the impulse then travels to the atrioventricular (AV) node. according to Medical Assisting- administrative and clinical procedures with anatomy and physiology.
Brain send the message via nerve impulses involving neurons which use the neuro-transmitter AcetylcholineAcetylcholine- a neurotransmitter released at the neuromuscular junction triggers a muscle action potential, which leads to muscle contraction
Stimulation of a muscle by an impulse transmitted by a motor nerve refers to the process where a nerve signal triggers muscle contraction. When a motor neuron is stimulated, it releases neurotransmitters at the neuromuscular junction, leading to depolarization of the muscle cell membrane. This depolarization causes calcium ions to be released within the muscle fibers, ultimately resulting in the contraction of the muscle. This process is essential for voluntary movements and muscle coordination.
When muscle fibers are stimulated to contract, an electrical impulse travels along the muscle cell membrane, leading to the release of calcium ions from the sarcoplasmic reticulum. This release of calcium triggers the interaction between actin and myosin filaments, the proteins responsible for muscle contraction. The myosin heads attach to actin and pull, causing the muscle fiber to shorten and generate force. This process is known as the sliding filament theory of muscle contraction.
The transmission of a nerve impulse across the synaptic cleft typically takes around 1 to 2 milliseconds. When the nerve impulse reaches the axon terminal, neurotransmitters are released into the synaptic cleft, binding to receptors on the muscle cell membrane. This process triggers a cascade of events that lead to muscle contraction, usually occurring within a few milliseconds after neurotransmitter binding. Overall, the entire process from nerve impulse to muscle contraction can occur in less than 10 milliseconds.
each nerve impulse begins in the dendrites of a neuron's. the impulse move rapidly toward the neuron's cell body and then down the axon until it reaches the axon tip.a nerve impulse travels along the neuron in the form of electrical and chemical signals.Brain send the message via nerve impulses involving neurons which use the neuro-transmitter AcetylcholineAcetylcholine- a neurotransmitter released at the neuromuscular junction triggers a muscle action potential, which leads to muscle contraction.
Brain send the message via nerve impulses involving neurons which use the neuro-transmitter AcetylcholineEach nerve impulse begins in the dendrites of a neuron's. the impulse move rapidly toward the neuron's cell body and then down the axon until it reaches the axon tip.a nerve impulse travels along the neuron in the form of electrical and chemical signals.Acetylcholine- a neurotransmitter released at the neuromuscular junction triggers a muscle action potential, which leads to muscle contraction
The nerve impulse causes the release of acetylcholine from the motor end plate. This causes the depolarization of the membrane of the adjacent muscle cell. Depolarization triggers the release of calcium ions from the sarcoplasmic reticulum inside the muscle cell. In the presence of ATP, the high calcium level causes the myosin heads to bend, dragging actin filaments towards the middle of the unit of contraction.
In order for a muscle to contract, the brain sends a nerve impulse to the muscle it wants to contract. The nerve impulse triggers the potassium inside the muscle fiber cell to switch places with the calcium outside the cell wall, thereby feeding the cell and contracting the muscle. A second nerve impulse from the brain triggers the calcium to switch places with the potassium, releasing the contracted muscle.
Transmitting a muscle impulse into the interior of the cell involves depolarization of the cell membrane through the opening of voltage-gated sodium channels, allowing sodium ions to rush into the cell. This depolarization then triggers the release of calcium ions from the sarcoplasmic reticulum, leading to muscle contraction.
Brain send the message via nerve impulses involving neurons which use the neuro-transmitter AcetylcholineEach nerve impulse begins in the dendrites of a neuron's. the impulse move rapidly toward the neuron's cell body and then down the axon until it reaches the axon tip.a nerve impulse travels along the neuron in the form of electrical and chemical signals.Acetylcholine- a neurotransmitter released at the neuromuscular junction triggers a muscle action potential, which leads to muscle contraction
Yes, motor nerves are responsible for stimulating muscle movement. They transmit signals from the central nervous system to muscle fibers, leading to contraction and movement. When a motor nerve impulse reaches a muscle, it triggers the release of neurotransmitters at the neuromuscular junction, which initiates muscle contraction. This coordinated process allows for voluntary and involuntary movements throughout the body.