neurons
neuron
Yes, the axon conducts the action potential from the cell body to the effector organ.
Action potential is the term for an electrical change in the neuronal membrane transmitted along an axon. The axon is part of a nerve cell that conducts impulses.
An action potential is caused by an influx of sodium ions into the cell through voltage-gated sodium channels. This influx of sodium ions results in depolarization of the cell membrane, leading to the generation of an action potential.
Action potential
The presynaptic cell that must have action potentials to produce one or more action potentials in the postsynaptic cell is the neuron releasing neurotransmitters at the synapse. When an action potential reaches the presynaptic terminal, it triggers the release of neurotransmitters into the synaptic cleft, which then bind to receptors on the postsynaptic cell membrane, leading to the generation of an action potential in the postsynaptic cell.
This change in permeability allows ions to flow in and out of the cell, altering the cell's electrical potential. This process can lead to the generation of an action potential, which is a brief electrical impulse that travels along the membrane of the cell. This action potential is crucial for cell communication and signaling.
When a cell is in action, the electrical potential becomes more positive compared to the resting state. This is due to an influx of positively charged ions such as sodium. During the resting state, the electrical potential is negative, maintained by the concentration gradient of ions across the cell membrane.
During the rising phase of an action potential, voltage-gated sodium channels open in response to a depolarizing stimulus. This allows sodium ions to rush into the cell, causing a rapid depolarization of the cell membrane. This results in the cell reaching its threshold and firing an action potential.
The falling phase, or repolarization, of an action potential involves the rapid efflux of potassium ions out of the cell, causing the membrane potential to return to its resting state. This phase allows the cell to restore its internal balance of ions and prepare for the next action potential.
Sodium and potassium ions are the two molecules necessary for the action potential in neurons. Sodium ions flow into the cell during depolarization, while potassium ions flow out of the cell during repolarization. This ion movement across the cell membrane is essential for the generation and propagation of the action potential.
Out of the cell into the tissue fluid.