Pacemaker potentials are automatic potentials generated and are exclusively seen in the heart. They arise from the natural "leakiness" of the membrane that pacemaker cells have, resulting in passive movement of both Na+ and Ca2+ across the membrane, rising the membrane potential to about -40mV. This results in a spontaneous depolarization of the muscle that has a rise in the curve that is nowhere near as steep as the action potential of other cells. Upon depolarization, the cell will return back to its resting membrane voltage, and continue the potential again.
No, hyperpolarization graded potentials do not lead to action potentials. Hyperpolarization makes the membrane potential more negative, which inhibits the generation of an action potential by increasing the distance from the threshold potential needed to trigger an action potential.
Dendrites primarily conduct graded potentials, which are local changes in membrane potential. These graded potentials can accumulate and trigger an action potential in the axon hillock if they reach a certain threshold. Action potentials are then conducted along the axon.
Action potentials are how nerve impulses are transmitted from neuron to neuron. An action potential is formed when a stimulus to the nerve cell causes the membrane to depolarize and open all of its sodium ion channels toward the threshold potential.
Action potentials are rapid, all-or-nothing electrical signals that travel along the axon of a neuron, triggered by a threshold stimulus. Graded potentials are slower, variable electrical signals that occur in response to a stimulus, but do not necessarily reach the threshold for an action potential. Action potentials are essential for long-distance communication in the nervous system, while graded potentials play a role in short-distance signaling and can summate to trigger an action potential.
No, subthreshold stimulation is not sufficient to trigger an action potential. The membrane potential needs to reach a certain threshold level for an action potential to be generated. Subthreshold stimulation only produces graded potentials that do not reach the threshold for firing an action potential.
The trigger zone of a neuron includes the axon hillock, where graded potentials are summed together to determine if an action potential will be initiated. It is the region where voltage-gated sodium channels are concentrated and play a crucial role in generating an action potential. If the depolarization at the trigger zone reaches a certain threshold, an action potential will be generated and propagated down the axon.
A synaptic potential exists at the INPUT of a neuron (dendrite), and an action potential occurs at the OUTPUT of a neuron (axon). (from OldGuy)(from Ilantoren:) A synaptic potential is the result of many excitatory post synaptic potentials (epsp) each one caused by the synaptic vesicles released by the pre-synaptic terminus. If there are enough of these epsp then the responses will summate and depolarize the post-synaptic membrane at the axon hillock enough to fire an action potential.
The SA node is the "pacemaker" of the heart. Cells in the SA node are called "pacemaker" cells and they direct the contraction rate of the entire heart by generating action potentials.
Graded potentials are small changes in membrane potential that can vary in size and duration, while action potentials are brief, large changes in membrane potential that are all-or-nothing. Graded potentials are used for short-distance communication within a neuron, while action potentials are used for long-distance communication between neurons.
Cells with unstable resting membrane potentials, such as pacemaker cells in the heart or neurons in the brain, can continually depolarize due to the presence of a "funny" current (If) that slowly depolarizes the cell until it reaches the threshold for an action potential to be generated.
Local Potentials: Ligand regulated, may be depolarizing or hyperpolarizing, reversible, local, decremental Action Potentials: Voltage regulated, begins with depolarization, irreversible, self-propagating, nondecremental.
An action potential is a rapid and all-or-nothing electrical signal that travels along the axon of a neuron, while a graded potential is a small and variable electrical signal that occurs in response to a stimulus. Action potentials are typically generated in neurons, while graded potentials can occur in various types of cells.