The bike wheel. It wil have its mass concentrated out by the rim.
The moment of inertia of a solid round shaft is (\frac{π}{32} \times D^4), where D is the diameter of the shaft.
A solid disk will roll faster down an incline compared to a hoop because more mass is concentrated at the center of the disk, which increases its rotational inertia and supports the rolling motion. The distribution of mass in a hoop is more spread out, leading to lower rotational inertia and a slower rolling speed.
The moment of inertia of a cylinder is a measure of its resistance to changes in its rotational motion. It depends on the mass distribution of the cylinder and its distance from the axis of rotation. The formula for the moment of inertia of a solid cylinder is 1/2 mass radius2.
The solid disk has a greater moment of inertia than the solid sphere because the mass of the disk is distributed farther from the axis of rotation, resulting in a larger rotational inertia. This difference can be explained by the parallel axis theorem, which states that the moment of inertia of an object can be calculated by adding the moment of inertia of the object's center of mass and the product of the mass and the square of the distance between the center of mass and the axis of rotation.
The moment of inertia of a solid sphere about its diameter is (2/5)MR^2, where M is the mass of the sphere and R is the radius. This can be derived from the formula for the moment of inertia of a solid sphere about its center, which is (2/5)MR^2, by applying the parallel axis theorem.
Moment of inertia is a measure of an object's resistance to changes in its rotational motion. An example problem illustrating this concept could be calculating the moment of inertia of a solid cylinder rotating around its central axis. The formula for the moment of inertia of a solid cylinder is I (1/2) m r2, where m is the mass of the cylinder and r is the radius. By plugging in the values for mass and radius, you can calculate the moment of inertia of the cylinder.
Sources of error in the experiment of moment of inertia of a solid cylinder can include friction in the rotating system, inaccuracies in the measuring instruments such as rulers or calipers, variations in the dimensions of the cylinder, and errors in the calculation of the rotational inertia formula. Additionally, external factors like air resistance or vibrations can also introduce errors in the experiment.
A solid ball rolls faster than a hollow sphere because it has more mass concentrated at its center, providing greater rotational inertia and stability, leading to increased speed and momentum.
The mass of the gasses that make up our atmosphere weigh much more than the human population (1 trillionth of the earths mass) and move opportunistically into dense and low density pockets in all positions at all times on the globe and they have absolutely no effect on the rotational inertia. Consider the earth is not a solid mass inside or out, it is basically a hydraulic dampener. Now if you could generate sufficient vibration waves in order to harmonically disrupt the fluid dampening effect it would be possible for the system to fault and the earth to throw a bulge.
a bicycle tire is a solid, because it is made out of rubber and rubber is solid. so, therefore, a bicycle tire is a soid.
Moment of inertia depends upon the distribution of mass with respect to the axis of rotation.The greater the distance between the bulk of an object's mass and the axis of rotation, the greater the moment of inertia will be. A solid disk has its mass distributed evenly across its diameter, while a ring has its mass concentrated furthest from the centre of rotation.
The total energy of a rolling solid sphere is the sum of its kinetic energy and its rotational energy. The kinetic energy of the sphere is given by 1/2 * m * v^2, where m is the mass of the sphere and v is its linear velocity. The rotational energy is given by 1/2 * I * w^2, where I is the moment of inertia of the sphere and w is its angular velocity.