Cart experiences a change in velocity(which is a vector quantity, not like speed).
Cart's velocity on circular track has to be tangent to track at each point and because of that it has to change its direction. Speed may or not remain the same, you can't tell it changes in each possible case.
Mass and weight remain the same.
The horizontal distance will be doubled.
To determine how far a projectile travels horizontally, you need to know the initial velocity of the projectile, the angle at which it was launched, and the acceleration due to gravity. Using these values, you can calculate the time of flight and then multiply it by the horizontal component of the initial velocity to find the horizontal distance traveled.
A projectile has maximum horizontal range when it is launched at an angle of 45 degrees to the horizontal. This angle allows for the ideal balance between the horizontal and vertical components of the projectile's velocity, ensuring that it travels the farthest distance before hitting the ground.
If you keep th velocity of projection and change the angle of projection from 75 degrees to 45 degrees what will happen to the horizontal distance the projectile travels? if you finish the nova net lesson you might learn the answer! It will travel a greater distance!
initial velocity, angle of launch, height above ground When a projectile is launched you can calculate how far it travels horizontally if you know the height above ground it was launched from, initial velocity and the angle it was launched at. 1) Determine how long it will be in the air based on how far it has to fall (this is why you need the height above ground). 2) Use your initial velocity to determine the horizontal component of velocity 3) distance travelled horizontally = time in air (part 1) x horizontal velocity (part 2)
initial velocity, angle of launch, height above ground When a projectile is launched you can calculate how far it travels horizontally if you know the height above ground it was launched from, initial velocity and the angle it was launched at. 1) Determine how long it will be in the air based on how far it has to fall (this is why you need the height above ground). 2) Use your initial velocity to determine the horizontal component of velocity 3) distance travelled horizontally = time in air (part 1) x horizontal velocity (part 2)
A circular motion is called uniform when the object travels around a fixed point at a constant angular velocity. This means that the speed and direction of the object remains constant throughout its motion, leading to a uniform circular movement.
To find the horizontal distance of an object dropped by a plane, you can use the formula: distance = velocity x time. First, calculate the time it takes for the object to fall using the formula: time = √(2 x height / g), where g is the acceleration due to gravity (9.81 m/s^2). Then, multiply the time by the horizontal velocity of the plane to find the horizontal distance the object travels.
What determines the amount of horizontal and vertical distance a basketball player travels while making a slam dunk is momentum. The players weight and velocity combine to carry momentum as he jumps, soars, and lands.
The horizontal distance a projectile travels is called range.
To calculate her angular momentum, you would need to know her moment of inertia (which depends on both her mass and how this mass is distributed relative to the axis of rotation), her velocity (speed at which she travels in a circular path), and the radius of the circle she is skating. You would use the formula for angular momentum, which is given by the equation: L = I * ω, where L is angular momentum, I is moment of inertia, and ω is angular velocity.
To determine how far a projectile travels horizontally, you need to know the initial velocity of the projectile, the angle at which it was launched, and the acceleration due to gravity. Using these values, you can calculate the horizontal distance traveled using the projectile motion equations.