Following are the essentials of indicating instruments: 1. Operating torque, 2. Controlling torque, and 3. Damping torque. OPERATING TORQUE Operating torque is produced by making use of any of these effects: magnetic, electromagnetic induction...., it is required to move the moving system of the instrument. CONTROLLING TORQUE Controlling torque opposes the operating torque and increases with the deflection of the moving system. It ensures that the deflection of the pointer is according to the magnitude of electrical quantity being measured. If this torque were not provided, the pointer would continue to move indefinitely and the deflection shall be independent of electrical quantity being measured. It also bring the pointer back to zero when the instrument is removed from the circuit. This torque is either obtained by spring or by gravity. In spring control, one or two phosphor bronze spiral hair-springs are attached to the moving spindle. The other end are attached to the frame. In this case Tc proportional to Angle of deflection. In gravity control, a small weight is attached to the moving system in such a way that it tries to bring the pointer back to the zero position when it is deflected, due to gravity. In this casse Tc proportional to sine of the angle of deflection. DAMPING TORQUE Controlling torque controls the deflection and tries to stop the pointer at its final position where its Td = Tc But due to inertia, the pointer oscillates around its final position before coming to rest. Hence damping torque is provided to avoid this oscillation and bring the pointer quickly to its final position. Thus the damping torque is never greater than the controlling torque. In fact it is the condition of critical damping which is sufficient to enable the pointer to rise quickly to its deflected position without overshooting.
If the deflection yoke is rotated it can cause a slanted TV picture. The deflection yoke is located on the tube neck inside the TV.
The vertical deflection system is broken. The vertical deflection system is broken.
A galvanometer shows opposite deflection because the current flowing through it causes a magnetic field that interacts with the permanent magnet inside the galvanometer. The direction of the magnetic field determines the direction of deflection of the needle, resulting in opposite deflection depending on the direction of current flow.
Downward deflection in a beam can be caused by various factors such as applied loads, weight of the beam itself, support conditions, and material properties. The beam experiences bending under these factors, resulting in deformation or deflection. Factors such as stiffness, beam geometry, and loading conditions influence the magnitude of the downward deflection.
Tighten the belt until you have 1/2" of deflection at midpoint. I hope this helps you. Mark
Torque does.
torque/weight ratio of an instrument indicates sensitivity.if a pointer is having less weight, it will be having high torque/weight ratio so that even for a very small deflection pointer starts moving and indicates measured value.
A torque sensor, or torque meter, is a device that measures the torque on rotating systems, usually wheels. Torque, in this case, is the twisting force that causes rotation, such as that applied when you pedal a bicycle.
Positive torque in mechanical systems causes rotation in one direction, while negative torque causes rotation in the opposite direction. Positive torque is typically associated with tightening or accelerating, while negative torque is associated with loosening or decelerating.
Overloading
left. This is due to the rotation of the Earth causing a deflection in the direction of moving objects, including winds. In the Southern Hemisphere, this deflection results in winds curving to the left.