If the gun is stationary before the shot, then the momentum of the gun and the
momentum of the bullet are equal and opposite after the shot.
By Newton's third law of motion, for every action, there is an equal and opposite reaction. When a gun fires a bullet, the bullet gains momentum in one direction, causing the gun to recoil in the opposite direction with an equal amount of momentum. So the momentum of the bullet is equal in magnitude to the momentum of the gun, but in opposite directions.
A bullet fired from a gun has more momentum than a train at rest because momentum is the product of an object's mass and velocity. The bullet, despite being smaller in mass compared to the train, can have a significantly higher velocity, resulting in a greater momentum.
The total momentum of the bullet and the gun before firing is zero, as the gun and the bullet are at rest. Momentum is the product of mass and velocity, and since both the gun and the bullet are not moving, their momentum is zero.
The momentum of the bullet is equal in magnitude but opposite in direction to the momentum of the gun. Use conservation of momentum to find the speed of the gun recoil. Since momentum is conserved, the momentum of the gun and bullet before they are fired is equal to the combined momentum of both after they are fired.
Momentum = mass x velocity A bullet has a high momentum because its velocity is really high.
In an isolated system the total momentum of a system remains conserved. For example If you fire a bullet from Gun , bullet go forward with some linear momentum and in order to conserve the linear momentum the gun recoils
Using the principle of conservation of momentum, we can calculate that the gun will recoil at 0.08 m/s in the opposite direction of the bullet. The total momentum of the gun and bullet before firing is equal to the total momentum after firing.
When a bullet is fired from a gun, Newton's third law is applied as the bullet and the gun experience equal and opposite forces. The force pushing the bullet out of the gun is equal to the force pushing the gun backward, causing recoil. This relationship between the bullet and the gun follows the principle of momentum conservation.
The momentum of a bullet fired from a gun is the product of its mass and velocity. It is a vector quantity that represents the motion of the bullet in a specific direction and is conserved in the absence of external forces.
The Railgun, it fires over double the speed of sound.
By conservation of momentum, the momentum of the gun and bullet system before firing must equal the total momentum after firing. Therefore, the velocity at which the gun recoils can be calculated by using the equation: (mass of bullet * velocity of bullet)/mass of gun = velocity of gun. Substituting the values given: (0.06 kg * 500 m/s) / 5 kg = 6 m/s.
The mass of a bullet is nowhere near the mass of a gun. A bullet weighs at most a few hundred grains. Most guns weigh at least a couple of pounds, some weigh several pounds (talking about handguns and rifles).