answersLogoWhite

0

What else can I help you with?

Related Questions

What 3 things affect the behavior gas?

Temperature, pressure, and volume are the three main factors that affect the behavior of gases. Changes in these properties can result in variations in the volume, pressure, and temperature of the gas.


How many moles is 15.2L of CH4?

It depends on temperature,pressure and volume.THese are needed to find number of moles


What is the relationship between pressure, volume, temperature, and the number of moles in a gas system as described by the graph of the ideal gas law?

The relationship between pressure, volume, temperature, and the number of moles in a gas system is described by the ideal gas law. This law states that the pressure of a gas is directly proportional to its temperature and the number of moles, and inversely proportional to its volume. This relationship is represented by the equation PV nRT, where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is temperature. The graph of the ideal gas law shows how changes in these variables affect each other in a gas system.


What is the relationship between temperature, volume, pressure, and the number of moles of a gas as described by the ideal gas law equation w-nRT?

The ideal gas law equation, w-nRT, describes the relationship between temperature (T), volume (V), pressure (P), and the number of moles of a gas (n). It states that the product of pressure and volume is directly proportional to the product of the number of moles, the gas constant (R), and the temperature. In simpler terms, as temperature increases, the volume of a gas increases if pressure and the number of moles are constant. Similarly, if pressure increases, volume decreases if temperature and the number of moles are constant.


If the number of moles of gas decrease what happens to the volume?

If the number of moles of gas decreases, the volume of the gas will decrease as well, assuming constant temperature and pressure. This is described by Boyle's Law, which states that the volume of a gas is inversely proportional to the number of moles of gas when pressure and temperature are held constant.


Does Charles law the temperature and number of moles stay constant?

Charles' Law: V1/T1 = V2/T2 The number of moles and the pressure are constant.


How to convert to moles not at standard temperature and pressure?

Use the ideal gas law, PV=nRT. P= pressure V= volume n= number of moles R= gas law constant T= temperature If you have P, V, R, T then you can solve for "n" to find the number of moles. There are a number of ways and variations that you can go about finding the number of moles, but all would involve the ideal gas law or a similar formula.


The volume of a gas is directly proportional to the number of moles of that gas if?

the pressure and temperature are held constant. ideal gas law: Pressure * Volume = moles of gas * temperature * gas constant


How does a change in pressure affect the ratio of PV to nRT?

A change in pressure does not affect the ratio of PV to nRT. The ideal gas law equation (PV = nRT) represents a constant relationship between pressure (P), volume (V), number of moles (n), gas constant (R), and temperature (T). Any change in pressure will lead to a corresponding change in volume, temperature, or number of moles to maintain the relationship defined by the ideal gas law.


What happens to the volume of a gas when the number of moles is doubled?

The ideal Gas Law states the following: pV=nRT p=pressure [pa] V=volume [m³] n=number of moles R=constant T=temperature [K] So, if you multiply the number of moles by 2, and all the other variables are not changed, your volume will also be multiplied by 2.


What is the different between molality and molarity?

The difference is in the denominators.Molarity (M) - the number of moles of solute divided by the number of liters of solution.Molality(m) - the number of moles of solute divided by the number of kilograms of solvent.


Why addition of water to oxalic doesn't affect the molarity?

Adding water to a solution of oxalic acid does not affect its molarity because the total number of moles of oxalic acid in the solution remains the same. Molarity is calculated based on the number of moles of solute divided by the volume of the solution, so as long as the number of moles of oxalic acid stays constant, the molarity remains unchanged.