Temperature, pressure, and volume are the three main factors that affect the behavior of gases. Changes in these properties can result in variations in the volume, pressure, and temperature of the gas.
It depends on temperature,pressure and volume.THese are needed to find number of moles
The relationship between pressure, volume, temperature, and the number of moles in a gas system is described by the ideal gas law. This law states that the pressure of a gas is directly proportional to its temperature and the number of moles, and inversely proportional to its volume. This relationship is represented by the equation PV nRT, where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is temperature. The graph of the ideal gas law shows how changes in these variables affect each other in a gas system.
The ideal gas law equation, w-nRT, describes the relationship between temperature (T), volume (V), pressure (P), and the number of moles of a gas (n). It states that the product of pressure and volume is directly proportional to the product of the number of moles, the gas constant (R), and the temperature. In simpler terms, as temperature increases, the volume of a gas increases if pressure and the number of moles are constant. Similarly, if pressure increases, volume decreases if temperature and the number of moles are constant.
If the number of moles of gas decreases, the volume of the gas will decrease as well, assuming constant temperature and pressure. This is described by Boyle's Law, which states that the volume of a gas is inversely proportional to the number of moles of gas when pressure and temperature are held constant.
Charles' Law: V1/T1 = V2/T2 The number of moles and the pressure are constant.
Use the ideal gas law, PV=nRT. P= pressure V= volume n= number of moles R= gas law constant T= temperature If you have P, V, R, T then you can solve for "n" to find the number of moles. There are a number of ways and variations that you can go about finding the number of moles, but all would involve the ideal gas law or a similar formula.
the pressure and temperature are held constant. ideal gas law: Pressure * Volume = moles of gas * temperature * gas constant
A change in pressure does not affect the ratio of PV to nRT. The ideal gas law equation (PV = nRT) represents a constant relationship between pressure (P), volume (V), number of moles (n), gas constant (R), and temperature (T). Any change in pressure will lead to a corresponding change in volume, temperature, or number of moles to maintain the relationship defined by the ideal gas law.
The ideal Gas Law states the following: pV=nRT p=pressure [pa] V=volume [m³] n=number of moles R=constant T=temperature [K] So, if you multiply the number of moles by 2, and all the other variables are not changed, your volume will also be multiplied by 2.
The difference is in the denominators.Molarity (M) - the number of moles of solute divided by the number of liters of solution.Molality(m) - the number of moles of solute divided by the number of kilograms of solvent.
Adding water to a solution of oxalic acid does not affect its molarity because the total number of moles of oxalic acid in the solution remains the same. Molarity is calculated based on the number of moles of solute divided by the volume of the solution, so as long as the number of moles of oxalic acid stays constant, the molarity remains unchanged.