To represent 64 characters, you would need 6 bits. This is because 2^6 equals 64, meaning six bits can encode 64 different values, sufficient for each character. Each bit can represent two states (0 or 1), and with six bits, you can create combinations to represent all 64 characters.
The number of bits needed to represent one symbol depends on the total number of unique symbols. The formula to calculate the number of bits required is ( n = \lceil \log_2(S) \rceil ), where ( S ) is the number of unique symbols. For example, to represent 256 unique symbols, 8 bits are needed, since ( \log_2(256) = 8 ).
A standard deck of playing cards has 52 cards. To determine how many bits are needed to represent each card, we can use the formula ( \lceil \log_2(52) \rceil ). Since ( \log_2(52) ) is approximately 5.7, we round up to 6 bits. Therefore, 6 bits are needed to uniquely represent each card in a standard deck.
5
log2 200 = ln 200 ÷ ln 2 = 7.6... → need 8 bits. If a signed number is being stored, then 9 bits would be needed as one would be needed to indicate the sign of the number.
To represent an eight-digit decimal number in Binary-Coded Decimal (BCD), each decimal digit is encoded using 4 bits. Since there are 8 digits in the number, the total number of bits required is 8 digits × 4 bits/digit = 32 bits. Therefore, 32 bits are needed to represent an eight-digit decimal number in BCD.
45 in binary is 101101, so you need at least 6 bits to represent 45 characters.
8 bits if unsigned, 9 bits if signed
how many bits are needed to represent decimal values ranging from 0 to 12,500?
The number of bits needed to represent one symbol depends on the total number of unique symbols. The formula to calculate the number of bits required is ( n = \lceil \log_2(S) \rceil ), where ( S ) is the number of unique symbols. For example, to represent 256 unique symbols, 8 bits are needed, since ( \log_2(256) = 8 ).
A standard deck of playing cards has 52 cards. To determine how many bits are needed to represent each card, we can use the formula ( \lceil \log_2(52) \rceil ). Since ( \log_2(52) ) is approximately 5.7, we round up to 6 bits. Therefore, 6 bits are needed to uniquely represent each card in a standard deck.
5
log2 200 = ln 200 ÷ ln 2 = 7.6... → need 8 bits. If a signed number is being stored, then 9 bits would be needed as one would be needed to indicate the sign of the number.
23 can be represented in binary as 10111 and would therefore require 5 bits to represent.
1200
18 in binary is 10010 Since 18 can't be written in term of 2 to the power x, the number of bits needed is 5. The answer is 5
4.1 bit for 2,2 bits for 4,3 bits for 8,4 bits for 16.
To represent an eight-digit decimal number in Binary-Coded Decimal (BCD), each decimal digit is encoded using 4 bits. Since there are 8 digits in the number, the total number of bits required is 8 digits × 4 bits/digit = 32 bits. Therefore, 32 bits are needed to represent an eight-digit decimal number in BCD.