Tension and compression takes place when an object has a force on another object. The tension is when the force is causing a pulling effect on part of the object. The compression is when the force is causing a contracting effect on part of the object.
As far as I am aware: Tension, Compression, Shear, Bending, Bearing.
structural, fatigue, flow. residual,and thermal
(a) Ductile materials: For ductile material such as mild steel, the load Vs compression diagram would be as follows(1) The ductile materials such as steel, Aluminum, and copper have stress - strain diagrams similar to ones which we have for tensile test, there would be an elastic range which is then followed by a plastic region.(2) The ductile materials (steel, Aluminum, copper) proportional limits in compression test are very much close to those in tension.(3) In tension test, a specimen is being stretched, necking may occur, and ultimately fracture fakes place. On the other hand when a small specimen of the ductile material is compressed, it begins to bulge on sides and becomes barrel shaped as shown in the figure above. With increasing load, the specimen is flattened out, thus offering increased resistance to further shortening ( which means that the stress - strains curve goes upward ) this effect is indicated in the diagram.Brittle materials ( in compression test )Brittle materials in compression typically have an initial linear region followed by a region in which the shortening increases at a higher rate than does the load. Thus, the compression stress - strain diagram has a shape that is similar to the shape of the tensile diagram.However, brittle materials usually reach much higher ultimate stresses in compression than in tension.For cast iron, the shape may be like thisBrittle materials in compression behave elastically up to certain load, and then fail suddenly by splitting or by craking in the way as shown in figure. The brittle fracture is performed by separation and is not accompanied by noticeable plastic deformation.
Compression blowby is air, fuel, and exhaust gasses slipping past the piston rings into the crankcase.
Cranes typically are designed with a FoS (Factor of Safety) of 5x the MBL (Minimum Breaking Load). So if the weakest part of the structure failed (e.g. in tension, compression or shear) at e.g. 100kN (10 metric tons), then the swl would be 10t / 5 = 2 tons
tension streches it compression squeezes it
A crack is caused by tension not compression because tension pulls matter apart while compression pushes matter together
1.compression 2.tension 3.torsion 4.shear 5.gravity
it is used to measure the extension or compression in the object after it is subjected to tension or compression test it is used to measure the extension or compression in the object after it is subjected to tension or compression test
Tension and compression are not forces themselves, but rather types of forces that act on objects. Tension is a force that pulls or stretches an object, while compression is a force that pushes or squeezes an object. Both tension and compression are common forces in structural mechanics.
compression zone is an positive zone,tension zone is an negative zone..
Compression and tension are two types of stress that can act on a material. Compression occurs when forces push inward on the material, while tension occurs when forces pull outward on the material. In the context of structures, compression and tension often work together to maintain stability and strength.
it protects from tension and compression
tension and compression
Temperature can affect the compression and tension of a rubber band by changing its elasticity. At higher temperatures, rubber bands become more flexible and stretchier, reducing their resistance to compression and tension. Conversely, at lower temperatures, rubber bands become stiffer and less stretchy, increasing their resistance to compression and tension.
Bending is another common stress that materials experience, in addition to tension, compression, and torsion. When a material undergoes bending, one part of it is in tension while the other part is in compression due to the applied load or moment.
To determine compression and tension in trusses, you can analyze the forces acting on the members using the method of joints or method of sections. By calculating the forces in each member, you can identify which members are in compression (pushing) and which are in tension (pulling).