answersLogoWhite

0

If there are only a resistor and a capacitor in the circuit, then the phase shift will indeed be between 0 and 90 degrees. When the resistor and capacitor are in series, the phase shift will be negative when the capacitor is connected to a source voltage and the resistor is the load. The phase shift will be positive when the resistor is connected to the source. The lower the values of R and C, the higher the frequency bandwidth.

With the resistor and capacitor connected in series and the two parts connected to a current source, the phase shift will be negative. At high frequencies, the output voltages is lower, and the circuit appears as a very low impedance. At low frequencies, the circuit looks more like a resistor. Again, the phase shift will be between 0 and 90 degrees.

Comment

The correct term is phase angle, not 'phase shift'. By definition, the phase angle is the angle by which the load current leads or lags the supply voltage. For an RC circuit, the current leads the voltage, so the phase angle is a leading phase angle.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Movies & Television

Why does a phase shift occur in a ce transistor?

In any transistor circuit , there is a phase shift. It takes a finite time for the controlling signal, usually on the base connection, to have an effect on the circuit and cause a change to the output. The shape of the signal remains but it is shifted in time (phase). The difference varies by configuration. It can be as much as180 degrees if the circuit is inverting the signal. The addition of passive components add to the shift.


What is Impedance for an RLC circuit in series?

1. The RLC series circuit is a very important example of a resonant circuit. It has a minimum of impedance Z=R at the resonant frequency, and the phase angle is equal to zero at resonance.AnswerThe impedance of an RLC circuit is the vector sum of the circuit's resistance, inductive reactance, and capacitive reactance -all of which are expressed in ohms. This applies whether the circuit is at resonance or not.


What is meaning of lv leads hv with 30 degree?

"LV leads HV with 30 degrees" typically refers to the phase relationship between low voltage (LV) and high voltage (HV) electrical systems. In this context, it indicates that the voltage of the LV system is leading the HV system by 30 degrees in terms of phase angle. This phase difference is important in power systems to ensure proper synchronization and efficient operation of electrical equipment. Overall, it highlights the timing difference between the two voltage levels in an electrical circuit.


What is the phase relationship between the input and output voltage of a common emitter amplifier?

In common emitter amplifier circuit, input and output voltage are out of phase. When input voltage is increased then ib is increased, ic also increases so voltage drop across Rc is increased. However, increase in voltage across RC is in opposite sense. So, the phase difference between the input and the output voltages is 180 degrees.


What are the condition for oscillation?

There are three conditions. These include positive feedback, the phase near the circuit needs to be either 36 or zero degrees, and the loop gain should be equal or greater than 1.

Related Questions

Compare the phase relationship between the voltage and current in a purely resistive circuit and an RL circuit?

In a pure resistive circuit the voltage and current are in phase. In an inductive circuit they are fro zero to 180 degrees out of phase. If they are in phase the Power Factor is 1 and 180 degrees the PF is zero. The exact amount of the phase difference depends on the specific circuit.


What is the phase difference between the current through the resistor and inductor in an AC circuit?

The phase difference between the current through the resistor and inductor in an AC circuit is 90 degrees.


What is the relationship between impedance phase angle and the behavior of an electrical circuit?

The impedance phase angle in an electrical circuit indicates the relationship between voltage and current. A phase angle of 0 degrees means voltage and current are in phase, while a phase angle of 90 degrees means they are out of phase. This affects how the circuit behaves, influencing factors like power consumption and efficiency.


What is phase diagram in series LCR circuit?

A phase diagram in a series LCR circuit shows the phase relationship between current and voltage at different frequencies. It helps in understanding the leading or lagging nature of current with respect to voltage. The diagram typically shows a phase shift between voltage and current, with the direction and magnitude of the shift depending on the circuit's impedance at a given frequency.


What is phase between voltage and current in a pure inductive circuit?

The phase angle between voltage and current in a purely inductive circuit, under ideal circumstances where there is no resistance at all, is 90 degrees.


Why the voltage drop across inductance and voltage drop across capacitance is greater than source voltage in series resonance circuit?

The reason for the total voltage drops across the capacitance and inductance IN AN AC CIRCUIT has to do with the different phase angles of the voltages.First, current is the same value and same phase angle everywhere in a series circuit. But, voltage across a capacitor lags current by 90 degrees (capacitor current leads voltage). Next, voltage across a pure inductance leads current by 90 degrees (inductor current lags voltage).The rule that all voltages in a series circuit have to add to the supply voltage still applies, but in this case, the voltage drops are added VECTORALLY, not arithmetically. If you were to graph this addition, you would show any resistance voltage in phase with the current, the capacitor voltage at -90 degrees to the current and the inductor voltage at +90 degrees to the current, for a phase difference between them of 180 degrees, cancelling each other out.In a series resonant circuit, the impedances of the capacitor and inductor cancel each other. The only impedance to the flow of current is any resistance in the circuit. Since real-life inductors always have some resistance, at least there is always some resistance in a series resonant circuit.


How many degrees are the current and voltage out of phase in a pure capacitive circuit?

In a pure (ideal) capacitive circuit, current leads voltage by 90 degrees.


The phase angle between voltage and current in an a c circuit through a pure capacitance is?

90 degrees. In an AC circuit with a pure capacitance, the current leads the voltage by 90 degrees. This is because the current in a capacitor is proportional to the rate of change of voltage across it, leading to this phase relationship.


What is the relationship between impedance and phase angle in an electrical circuit?

In an electrical circuit, impedance and phase angle are related because impedance affects the phase angle of the current in the circuit. The phase angle represents the time delay between the voltage and current waveforms in the circuit. A change in impedance can cause a shift in the phase angle, impacting the overall behavior of the circuit.


What is the relationship between the current and the components in a purely capacitive circuit?

In a purely capacitive circuit, the current and the components have a relationship where the current leads the voltage by 90 degrees. This means that the current and voltage are out of phase in a purely capacitive circuit.


What is the relationship between phase angle and impedance in an electrical circuit?

In an electrical circuit, the phase angle represents the time delay between the voltage and current waveforms. The impedance of a circuit is the total opposition to the flow of current. The relationship between phase angle and impedance is that the phase angle is determined by the ratio of the reactance to the resistance in the circuit, which affects the overall impedance.


Single phase and three phase circuit?

Yes, there is a difference between single phase and three phase circuits.