No, Beta plummets dramatically. Operation would be severely degraded.
The percentage of doping in emitter is higher than collector region.hence large current is flow to emitter than collector.
Asking about biasing of the emitter alone does not make sense. When you talk about bias, you talk about a junction, such as emitter-base or emitter-collector or base-collector. In a bipolar junction transistor (BJT) both the emitter-base and emitter-collector need to be forward biased, otherwise you are operating the BJT in cutoff mode. Certainly, if you intend to operate the BJT as a switch, then reverse bias for emitter-base (actually, zero bias) could well be one of the valid states, corresponding to a cutoff condition for emitter-collector. However, operation in linear mode, the other normal way to use a BJT, requires that both the emitter-base and the emitter-collector be forward biased. Of course, depending on the ratio of emitter-base to emitter-collector versus hFe, you could also be saturated, which is a non-linear mode, i.e. an on switch.
we should be take two point from the the graph between collector current and emitter-collector voltage.. along the horizontal line collector current is zero and emitter-collector voltage become Vcc,and along the vertical line emitter-collector voltage is zero and collector current become Vcc/RL then by this line that drow between this two point is called load line that in this line the transistor allowed to operate....
It depends on whether the transistor is in the active region or not. Usually, the transistor would be in the active region when we are asking this question. if we look at the data sheet for the popular 2N3905 transistor, available at http://www.fairchildsemi.com/ds/2N/2N3905.pdf, we see that if V collector-emitter is 10 V, the collector current is 1 mA, and the small signal frequency is 1 kHz, the typical small signal signal input impedance (which is nearly the same as small signal base-emitter resistance) is about 5,000 ohms. Under the same conditions, the typical output admittance, (which is nearly the same as the small signal collector-emitter resistance) is about 30 microsiemens. Calculate 1/0.000030 to find that this is the same as about 33,000 ohms, so in this case the collector-emitter small signal resistance is greater than the base-emitter small signal resistance. You might be able to find an operating point where the reverse is true.
Base voltage in a transistor. There is also Vc (Collector voltage), Ve(Emitter voltage), Ic(Collector current), Ib(Base current), Ie(Emitter current), Vcc(Supply voltage), and Hfe (Forward current gain)
The percentage of doping in emitter is higher than collector region.hence large current is flow to emitter than collector.
The percentage of doping in emitter is higher than collector region.hence large current is flow to emitter than collector.
1st pin is emitter then collector and base
some of emitter current goes out base instead of collector
In a common emitter amplifier, the base-emitter current causes a corresponding collector-emitter current, in the ratio of hFe (beta gain) or collector resistance over emitter resistance, which ever is less. Since this ratio is usually greater than one, the differential collector current is greater than the differential base current. This results in amplification of the base signal. As you increase the base-emitter current, the collector-emitter current also increases. This results in the collector being pulled towards the emitter, with the result that the differential collector voltage decreases. This results in inversion of the base signal.
It won't work.
The percentage of doping in emitter is higher than collector region.hence large current is flow to emitter than collector.
The collector voltage is not necessarily approximately zero when a transistor has a collector-emitter short. It depends on whether or not there is an emitter resistor.A typical collector-emitter circuit has two resistors, one in the collector and one in the emitter. One or both of them might be zero, i.e. not present, depending on design requirements. The collector-emitter junction represents a third resistor, the value of which is dependent on base-emitter vs collector-emitter current ratios and hFe.If the collector-emitter junction is shorted, then this circuit degrades to a simple voltage divider, or single resistor, and the collector-emitter voltage differential will be approximately zero. Simply calculate the voltage based on the one or two resistances.Results could be different than calculated, if the resistors are small in camparision to the shorted impedance, and it could be different depending on the base to emitter or collector relationship in that fault state, though the latter case is usually negligible due to the relatively high resistances of the base bias circuit.
The transistor acts like a normal pn diode. in NPN transistor the both n i.e.,collector and emitter ane shorted then they become a n and other is p so pn diode is formed. When the emitter and the collector of a transistor are short, the emitter current =the collector current.
The transistor has three regions, emitter,base and collector. The base is much thinner than the emitter while the collector is wider than both. However for the sake of convenience the emitter and collector are usually shown to be of equal size. The transistor has two pn junctions that means it is like two diodes. The junction between emitter and base may be called emitter-base diode or simply the emitter diode.The junction between base and collector may be called collector-base diode or simply collector diode. The emitter diode is always forward biased and the collector diode is always reverse biased.
# parameter are usually the base current ib,collector current ic,emitter current ie,collector emitter voltagevce,base emitter voltagevbe,collector base voltagevcb which decide the operation &output of the transistor
The emitter and collector pins are the outer pins, and on a metal can transistor, the emitter pin will be closest to the bit of metal that sticks out. For transistors with a flat side, the pins could be either Emitter, Base, then Collector with the flat side facing toward you, or Collector, Base, Emitter, or very rarely something else, so the datasheet should be consulted (search online for whatever is marked on it). On power transistors, it is Emitter, Collector, Base, with the metal tab facing you.