Interesting question. Because Fleming's right hand rule tells us that a conductor carrying a current perpedicular to a magnetic field will move in a particular direction we know that movement, current and magnetic field are related. So if we take the current away and instead force the conductor to move as described then we would observe a current in the wire. However, you have not said that your conductor is connected in a circuit - in which case the charge carriers in the conductor will tend to one side like a bar magnet.
Answer
The original answer is incorrect. A voltage would be induced into the conductor. No current would flow unless the conductor forms a continuous circuit.
Voltage
magnetic force
Moving a conductor through a magnetic field will produce alternatinc current (AC).
A: Believe it or not that what a transformer does
Yes Ofcourse ,when a curren is allowed to pass through a conductor,"IT IS BEING SURROUNDED BY MAGNETIC FIENLD".... Because it somehow behaves as the electromagnet as per FARADAY LAW OF ELECTROMAGNETIC INDUCTION.............
Voltage
The force experienced by a current-carrying conductor in a magnetic field is strongest when the current and magnetic field are perpendicular to each other, maximizing the force according to the right-hand rule.
-- A current flowing through a conductor creates a magnetic field around the conductor. -- Moving a conductor through a constant magnetic field creates a current in the conductor. -- If there's a conductor sitting motionless in a magnetic field, a current flows in the conductor whenever the strength or direction of the magnetic field changes.
When an electric current flows through a conductor, it creates a magnetic field around the conductor. This is due to the movement of charged particles, such as electrons, which generate a magnetic field. The strength of the magnetic field is directly proportional to the amount of current flowing through the conductor.
-- A current flowing through a conductor creates a magnetic field around the conductor. -- Moving a conductor through a constant magnetic field creates a current in the conductor. -- If there's a conductor sitting motionless in a magnetic field, a current flows in the conductor whenever the strength or direction of the magnetic field changes.
A changing magnetic field induces an electric current in a conductor.
The direction and amplitude of the magnetic field around a wire depend on the direction and amplitude of the current through the wire. When the wire carries DC, the direction and amplitude of the current in the wire are constant, so the direction and amplitude of the magnetic field around the wire are constant. When the wire carries AC, the direction of the current in the wire is periodically reversing and its amplitude typically changes, so the direction of the magnetic field around the wire is periodically reversing and its amplitude is typically changing.
A changing magnetic field A conductor or coil of wire Movement between the magnetic field and the conductor (relative motion)
When a current-carrying conductor is placed in a magnetic field, a force is exerted on the conductor due to the interaction between the magnetic field and the current. This force is known as the magnetic Lorentz force and its direction is perpendicular to both the magnetic field and the current flow. The magnitude of the force depends on the strength of the magnetic field, the current flowing through the conductor, and the length of the conductor exposed to the magnetic field.
magnetic force
When electrons move through a conductor, they create a flow of electrical current. This flow of current generates a magnetic field around the conductor in accordance with Ampere's law. The strength of the magnetic field is directly related to the magnitude of the current and the distance from the conductor.
Presumably, you are asking what happens when a conductor 'cuts' lines of magnetic flux? If so, then a voltage is induced across the ends of that conductor.