it doesn't develop emf ..........
ET got excited when he saw Yoda.
why leeuwenhoek was so excited about what he saw
excited to be there excited to be there
incite means not excited and excite means excited
mea tuck is excited because she loves tuck
The armature resistance of a shunt excited DC generator is calculated using the formula ( R_a = \frac{V - E}{I_a} ), where ( R_a ) is the armature resistance, ( V ) is the terminal voltage, ( E ) is the generated EMF (electromotive force), and ( I_a ) is the armature current. The difference between the terminal voltage and the generated EMF accounts for the voltage drop across the armature resistance due to the current flowing through it.
You have a seperately excited generator and then you have a shunt generator which has the field winding in parallel with the armature terminals. In DC machines a separately excited generator could be run as a shunt generator provided the field winding is designed to work on the generated voltage. A separately excited alternator needs a DC supply for the field winding. In car alternators that is taken from the main winding via a rectifier and a voltage regulator.
There are two types me dc generator 1 separately excited dc generator 2 self excited dc generator
in a separately excited generator the field coils are excited from a separate source like a dc battery may be or any other small generator. They are self starting generators.
Excitation is the phenomenon by which you control the excitation of field winding of a generator. In DC generator field winding is placed on stator and this field winding can be self excited or seperately excited depending upon the type on generator used. AC generators can also be self excited or seperately excited type but field winding is placed on rotor nad armature winding on stator.
self excited generator must be started without any external load attached ,an external load will continuously drain off the build up voltage and prevent the generator from reaching its proper operating voltage. also the presence of residual magnetism plays an important role And the field current resistance should be less than critic field circuit resistance
The terminal voltage of a self-excited shunt generator decreases with an increase in load due to an increase in voltage drop across the internal resistance of the generator. As the load current increases, the drop across the internal resistance also increases, reducing the output voltage available at the terminals. This effect is known as voltage regulation and is a common characteristic of self-excited shunt generators.
It is self excited generator, no external excitation circuit.
The difference between a separately excited DC generator and a Shunt DC generator is that for a separately excited Dc generator , the excitation field winding is supplied by an external source different from that supplying the armature while for shunt generator, the excitation field windind is connected in series with the armature and supplied by a single source.
Either or both can be separately excited. To generate voltage you need a big magnet( the field). Most generators use an electro-magnet. Now the electro-magnet needs a source of power (electricity). We could use the generators own output to excite the field (magnet), this is called self excitation. The problem with self excitation is that we have to wait for the generator to turn and start generating, also to start generating (Building up) there must be some left over magnetism from the last time it was run (called residual magnetism) or not even a little voltage will be generated to start the field current flowing. To solve these problems we could use separately excited. This means we must have a separate source of power to excite the field to produce the magnetism. Sometimes a battery or gasoline driven generator is used to excite the field of a very large generator to get it generating and then we can use some of the generated output to either recharge the battery or switch over to from the battery. In any case we have adjustable control of the generator all the time. This is why most generators are designed to be separately excited. And that is why you car has a voltage regulator. It wakes up the alternator when the engine is started by separately exciting it (the field) with the battery and then regulates the output voltage of the alternator as the engine changes speed with the driver's commands from the gas pedal.
The decrease in terminal voltage of a separately excited generator can be attributed to several factors, including increased load demand, which causes a drop in output voltage due to the internal resistance of the generator. Additionally, losses such as copper losses (I²R losses) in the armature and excitation system, as well as core losses, can contribute to a reduction in voltage. Another factor could be a decrease in the excitation current, which reduces the magnetic field strength and subsequently lowers the generated voltage. Lastly, any faults or issues in the electrical connections or components can also lead to decreased terminal voltage.
when the current is passing through the winding then it is called "Excitation". Types of excitation (1)seperately excited generator. (2)self excited generator. self generator is classified into 3 types. 1.shunt generator. 2.series generator. 3.compound generator. compoud generator is again classified into 2 types. 1.short shunt generator. 2.long shunt generator.