answersLogoWhite

0

What is NiCr?

Updated: 10/27/2022
User Avatar

Wiki User

15y ago

Best Answer

It is a metal---an alloy of Nickel and chromium.

User Avatar

Wiki User

15y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is NiCr?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Movies & Television
Related questions

Is Nicole and nicr are couple?

NOPE


What is the chemical formula of iron wire?

NiCr


What is the formula for nickel ii dichromate?

NiCr 2 O 7


What is the full form of NICR?

One possibility is "National Institute of Cancer Research"


What is the value of lustrium metal?

The actual value of 'Lustrium' is nearly impossible to determine because it's nickel-chromium (NiCr) alloy. However, since nickel is so common (It's used as cores for coinage and electro-plating), and since chromium is also fairly common (chrome auto parts, etc), I would be inclined to believe that 'Lustrium' cannot be valued on a per gram basis like gold or silver. A value per ton, certainly, but to compare it to silver is silly.


What are specifications for ohms resistance on blower motor resistors?

Wouldn't want to speak for all cars, but my 1997 Mazda Bravo (aka Ford Courier) seems to have the following setup: the fan speed is controlled by adding 1 Ohm 1 A resistors wired in series. eg Fan spd 4 has no resistor, spd 3 = 1 Ohm, spd 2 = 1+1=2 Ohm etc. (at least 1 amp resistors are required - I used NiCr wire coiled up to allow cooling.) The resistor pack is screwed onto the top of the blower motor behind the glove compartment. Cheers


Can an electric current pass easily through a conductor?

By definition, a conductor conducts electrical current. That say, the goodness of conduction varies among conductors-- the best being silver, whose electrical conductivity is 6.3E-7 [S/m]. Then copper, gold, ..., and so on. The least conductive metal or metal alloy is NiCr. Carbon, silicon, and Germanium (also certain III-V and II-VI compounds) belong to the semiconductor group. Outside conductors and semiconductors would be insulators. All elements/compounds have varying degrees of 'goodness.' Check Wikipedia for the whole picture (for example, http://en.wikipedia.org/wiki/Electrical_conductivity). To answer your question, all materials conduct electrical current somehow. But practically, it is safe to insulate yourself with an insulator -- consult an expert for safety reasons. Semiconductors become a poor conductor at a high-enough temperature. It is definitely unsafe to touch metallic materials within turning the power off first.


What is a carbon film resistor?

It's exactly what is says. A resistor made of a film of carbon deposited on a substrate. Cuts are made in the film to allow generation of different resistance values. ----------- A spiral is used to increase the length and decrease the width of the film, which increases the resistance. Varying shapes, coupled with the resistivity of carbon, (ranging from 9 to 40 µΩm) can make for a variety of resistances. Carbon film resistors feature a power rating range of 1/6 W to 5 W at 70 degree celcius. The resistance ranges from 1 ohm to 10M ohm. The carbon film resistor features an operating temperature of -55 to degree celcius to 155 degree celcius. It has 200 to 600 volts maximum working voltage range. Thick film resistors became popular during the 1970s, and most SMD resistors today are of this type. The principal difference between "thin film" and "thick film resistors" isn't necessarily the "thickness" of the film, but rather, how the film is applied to the cylinder (axial resistors) or the surface (SMD resistors). In thick film resistors the "film" is applied using traditional screen-printing technology. Thin film resistors are made by sputtering the resistive material onto the surface of the resistor. Sputtering is a method used in vacuum deposition. The thin film is then etched in a similar manner to the old (subtractive) process for making printed circuit boards: ie the surface is coated with a photo-sensitive material, then covered by a film, irradiated with ultraviolet light, and then the exposed photo-sensitive coating, and underlying thin film, are etched away. Thin film resistors, like their thick film counterparts, are then usually trimmed to an accurate value by abrasive or laser trimming. Because the time during which the sputtering is performed can be controlled, the thickness of the film of a thin-film resistor can be accurately controlled. The type of the material is also usually different consisting of one or more ceramic (cermet) conductors such as tantalum nitride (TaN), ruthenium dioxide (RuO2), lead oxide (PbO), bismuth ruthenate (Bi2Ru2O7), nickel chromium (NiCr), and/or bismuth iridate (Bi2Ir2O7). By contrast, thick film resistors may use the same conductive ceramics, but they are mixed with sintered (powdered) glass and some kind of liquid so that the composite can be screen-printed. This composite of glass and conductive ceramic (cermet) material is then fused (baked) in an oven at about 850 °C. Traditionally thick film resistors had tolerances of 5%, but in the last few decades, standard tolerances have improved to 2% and 1%. But beware, temperature coefficients of thick film resistors are typically ±200 or ±250 ppm/K, depending on the resistance. Thus a 40 kelvin (70° F) temperature change can add another 1% variation to a 1% resistor. Thin film resistors are usually specified with tolerances of 0.1, 0.2, 0.5, and 1%, and with temperature coefficients of 5 to 25 ppm/K. They are usually far more expensive than their thick film cousins. Note, though, that SMD thin film resistors, with 0.5% tolerances, and with 25 ppm/K temperature coefficients, when bought in full size reel quantities, are about twice the cost of a 1%, 250 ppm/K thick film resistors.


What is c c carbonate?

It's exactly what is says. A resistor made of a film of carbon deposited on a substrate. Cuts are made in the film to allow generation of different resistance values. ----------- A spiral is used to increase the length and decrease the width of the film, which increases the resistance. Varying shapes, coupled with the resistivity of carbon, (ranging from 9 to 40 µΩm) can make for a variety of resistances. Carbon film resistors feature a power rating range of 1/6 W to 5 W at 70 degree celcius. The resistance ranges from 1 ohm to 10M ohm. The carbon film resistor features an operating temperature of -55 to degree celcius to 155 degree celcius. It has 200 to 600 volts maximum working voltage range. Thick film resistors became popular during the 1970s, and most SMD resistors today are of this type. The principal difference between "thin film" and "thick film resistors" isn't necessarily the "thickness" of the film, but rather, how the film is applied to the cylinder (axial resistors) or the surface (SMD resistors). In thick film resistors the "film" is applied using traditional screen-printing technology. Thin film resistors are made by sputtering the resistive material onto the surface of the resistor. Sputtering is a method used in vacuum deposition. The thin film is then etched in a similar manner to the old (subtractive) process for making printed circuit boards: ie the surface is coated with a photo-sensitive material, then covered by a film, irradiated with ultraviolet light, and then the exposed photo-sensitive coating, and underlying thin film, are etched away. Thin film resistors, like their thick film counterparts, are then usually trimmed to an accurate value by abrasive or laser trimming. Because the time during which the sputtering is performed can be controlled, the thickness of the film of a thin-film resistor can be accurately controlled. The type of the material is also usually different consisting of one or more ceramic (cermet) conductors such as tantalum nitride (TaN), ruthenium dioxide (RuO2), lead oxide (PbO), bismuth ruthenate (Bi2Ru2O7), nickel chromium (NiCr), and/or bismuth iridate (Bi2Ir2O7). By contrast, thick film resistors may use the same conductive ceramics, but they are mixed with sintered (powdered) glass and some kind of liquid so that the composite can be screen-printed. This composite of glass and conductive ceramic (cermet) material is then fused (baked) in an oven at about 850 °C. Traditionally thick film resistors had tolerances of 5%, but in the last few decades, standard tolerances have improved to 2% and 1%. But beware, temperature coefficients of thick film resistors are typically ±200 or ±250 ppm/K, depending on the resistance. Thus a 40 kelvin (70° F) temperature change can add another 1% variation to a 1% resistor. Thin film resistors are usually specified with tolerances of 0.1, 0.2, 0.5, and 1%, and with temperature coefficients of 5 to 25 ppm/K. They are usually far more expensive than their thick film cousins. Note, though, that SMD thin film resistors, with 0.5% tolerances, and with 25 ppm/K temperature coefficients, when bought in full size reel quantities, are about twice the cost of a 1%, 250 ppm/K thick film resistors.


What is carbon(c) similar to?

It's exactly what is says. A resistor made of a film of carbon deposited on a substrate. Cuts are made in the film to allow generation of different resistance values. ----------- A spiral is used to increase the length and decrease the width of the film, which increases the resistance. Varying shapes, coupled with the resistivity of carbon, (ranging from 9 to 40 µΩm) can make for a variety of resistances. Carbon film resistors feature a power rating range of 1/6 W to 5 W at 70 degree celcius. The resistance ranges from 1 ohm to 10M ohm. The carbon film resistor features an operating temperature of -55 to degree celcius to 155 degree celcius. It has 200 to 600 volts maximum working voltage range. Thick film resistors became popular during the 1970s, and most SMD resistors today are of this type. The principal difference between "thin film" and "thick film resistors" isn't necessarily the "thickness" of the film, but rather, how the film is applied to the cylinder (axial resistors) or the surface (SMD resistors). In thick film resistors the "film" is applied using traditional screen-printing technology. Thin film resistors are made by sputtering the resistive material onto the surface of the resistor. Sputtering is a method used in vacuum deposition. The thin film is then etched in a similar manner to the old (subtractive) process for making printed circuit boards: ie the surface is coated with a photo-sensitive material, then covered by a film, irradiated with ultraviolet light, and then the exposed photo-sensitive coating, and underlying thin film, are etched away. Thin film resistors, like their thick film counterparts, are then usually trimmed to an accurate value by abrasive or laser trimming. Because the time during which the sputtering is performed can be controlled, the thickness of the film of a thin-film resistor can be accurately controlled. The type of the material is also usually different consisting of one or more ceramic (cermet) conductors such as tantalum nitride (TaN), ruthenium dioxide (RuO2), lead oxide (PbO), bismuth ruthenate (Bi2Ru2O7), nickel chromium (NiCr), and/or bismuth iridate (Bi2Ir2O7). By contrast, thick film resistors may use the same conductive ceramics, but they are mixed with sintered (powdered) glass and some kind of liquid so that the composite can be screen-printed. This composite of glass and conductive ceramic (cermet) material is then fused (baked) in an oven at about 850 °C. Traditionally thick film resistors had tolerances of 5%, but in the last few decades, standard tolerances have improved to 2% and 1%. But beware, temperature coefficients of thick film resistors are typically ±200 or ±250 ppm/K, depending on the resistance. Thus a 40 kelvin (70° F) temperature change can add another 1% variation to a 1% resistor. Thin film resistors are usually specified with tolerances of 0.1, 0.2, 0.5, and 1%, and with temperature coefficients of 5 to 25 ppm/K. They are usually far more expensive than their thick film cousins. Note, though, that SMD thin film resistors, with 0.5% tolerances, and with 25 ppm/K temperature coefficients, when bought in full size reel quantities, are about twice the cost of a 1%, 250 ppm/K thick film resistors.