answersLogoWhite

0

Inertial mass is a quantitative measure of an object's resistance to the change of its speed. Gravitational mass is the property of the mass of an object that produces a gravitational field in the space surrounding the object.

User Avatar

Wiki User

11y ago

What else can I help you with?

Continue Learning about Movies & Television

When is gravitational force the strongest?

Gravitational force is the strongest when you are the closest to a mass.


What is the relationship between time and universal gravitation?

Gravity is the force of attraction between massive particles due to their mass. Weight is determined by the mass of an object and its location in a gravitational field. While a great deal is known about the properties of gravity, the ultimate cause of the gravitational force remains an open question. General relativity, which postulates a relationship between mass and energy curve, space and time, is the most successful theory of gravitation to date.


What type of energy increases with its height?

gravitational potential energy


What are the 3 factors of weight?

The mass of the object, the mass of the object that is attracting it and the distance between their centres of gravity.So your weight on the moon will depend on your mass, the moon's mass and the distance from your centre of gravity to the moon's.The mass of the object, the mass of the object that is attracting it and the distance between their centres of gravity.So your weight on the moon will depend on your mass, the moon's mass and the distance from your centre of gravity to the moon's.The mass of the object, the mass of the object that is attracting it and the distance between their centres of gravity.So your weight on the moon will depend on your mass, the moon's mass and the distance from your centre of gravity to the moon's.The mass of the object, the mass of the object that is attracting it and the distance between their centres of gravity.So your weight on the moon will depend on your mass, the moon's mass and the distance from your centre of gravity to the moon's.


What does the gravitational attraction between the earth and the moon depend on?

The mass of both the earth and the moon and the distance between each. From Newtons Law of Universal Gravitation, we see that the force due to gravity is directly proportional to the masses of both bodies and inversely proportional to the square of the distance between the centers. Since the net force equates to mass times acceleration we can say that the acceleration is equal to the differences between both forces of attraction divided by mass.

Related Questions

What is the relationship between inertial and gravitational mass?

Inertial mass and gravitational mass are the same thing. This means that an object's resistance to changes in motion (inertial mass) is equal to the force of gravity acting on it (gravitational mass).


What does the equivalence principle say about the relationship between gravitational and inertial mass?

The equivalence principle states that gravitational mass and inertial mass are equivalent, meaning that the gravitational force experienced by an object is directly proportional to its inertial mass.


What is the relationship between inertial mass and gravitational mass?

The relationship between inertial mass and gravitational mass is that they are equal. Inertial mass is a measure of an object's resistance to changes in motion, while gravitational mass is a measure of the strength of the gravitational force acting on an object. The fact that these two types of mass are equal is a fundamental principle of physics known as the equivalence principle.


What is the relationship between inertial mass and gravitational mass in the context of physics?

In physics, the relationship between inertial mass and gravitational mass is that they are equal. Inertial mass is a measure of an object's resistance to changes in its motion, while gravitational mass is a measure of the strength of the gravitational force acting on an object. The fact that these two types of mass are equal is a fundamental principle in physics known as the equivalence principle.


What is the difference between gravitational mass and inertial mass?

Gravitational mass refers to the measure of an object's response to the force of gravity, while inertial mass refers to the measure of an object's resistance to changes in its motion. The key difference is that gravitational mass determines the strength of the gravitational force on an object, while inertial mass determines how difficult it is to change the object's motion.


The relationship between inertial mass and grvitational mass?

inertial mass (m) = 1Kg gravitational mass = GmM/R2 where G = 6.673x10-11m3kg-1s-2 m = inertial mass 1Kg M = mass of the Earth R= Radius of the Earth gravitational mass = 9.8 Newtons depending on your latitude.


Why are inertial and gravitational mass the same?

What


How are gravitational mass and inertial mass alike?

The idea here is that if - for example - one object has twice the inertia than another (i.e., twice the "inertial mass"), its reaction to gravity (its "gravitational mass") will also be twice as much. Thus, the gravitational mass and the inertial mass are directly proportional to one another, and you can just as well choose the proportionality constant to be one, making them equal.


Are inertial and gravitational acceleration equal?

No, inertial and gravitational acceleration are not equal. Inertial acceleration is caused by changes in velocity due to forces acting on an object, while gravitational acceleration is caused by the force of gravity on an object due to its mass.


What are the different types of mass and how do they differ from each other?

There are two main types of mass: inertial mass and gravitational mass. Inertial mass measures an object's resistance to changes in motion, while gravitational mass measures the strength of the object's gravitational pull. These two types of mass are related but distinct concepts in physics.


What is ratio of inertia of mass to given mass is?

This is called the Equivalence Principle. There are many formulas to go with it. But it is basically this: A little reflection will show that the law of the equality of the inertial and gravitational mass is equivalent to the assertion that the acceleration imparted to a body by a gravitational field is independent of the nature of the body. For Newton's equation of motion in a gravitational field, written out in full, it is: (Inertial mass) (Acceleration) = (Intensity of the gravitational field) (Gravitational mass). It is only when there is numerical equality between the inertial and gravitational mass that the acceleration is independent of the nature of the body. -Albert Einstein


What simple observation confirms that gravitational mass and inertial mass are equal?

One simple observation is that when objects of different masses are dropped in a vacuum, they accelerate at the same rate towards the ground. This indicates that the gravitational force experienced by each object is directly proportional to its inertial mass.