yes
Ama'Ama means "Mullet", a type of fish
There is no mystery wedge
si kevin baby calo ba yung anak ni marcial ama
Utang ng ama - 2003 is rated/received certificates of: Philippines:PG-13
IMA divided by Length
MA= resistance force / effort force = Fr/Fe
To calculate wedge force, you can use the formula: F = T * tan(α), where F is the force applied to the wedge, T is the force perpendicular to the wedge (normal force), and α is the angle of the wedge. This formula assumes the wedge is ideal and there is no friction. Adjustments may need to be made for real-world applications where friction plays a role.
AMA=force produced/force applied TMA=distance effort moves/distance load moves
To calculate a wedge, you need to determine the angle of the wedge and the dimensions of the object it is applied to. The formula for the wedge's force can be derived from the relationship between the angle and the distance it penetrates. Typically, the formula involves the tangent of the angle of the wedge (tan θ = opposite/adjacent) and can be used to calculate the required force based on the load and the angle. If you're looking at a specific application, like a mechanical wedge or a construction wedge, the context may require more detailed calculations based on material properties and geometry.
To find the mechanical advantage (MA) of a wedge, you can use the formula: MA = length of the wedge / height of the wedge. The length refers to the distance from the tip to the base of the wedge, while the height is the vertical distance from the base to the top. This ratio indicates how much force is amplified when using the wedge to split or lift materials.
The mechanical advantage (MA) of a wedge can be calculated using the formula: MA = (\frac{\text{length of the wedge}}{\text{thickness of the wedge}}). This ratio indicates how much the wedge amplifies the input force applied to it. By comparing the input distance (the length of the wedge) to the output distance (the thickness), you can determine how effectively the wedge converts force. A larger MA means the wedge is more efficient at splitting or lifting materials.
To determine mechanical advantage (MA) of a wedge, we use the formula MA = length of the wedge / width of the wedge. For the first wedge, MA = 6 cm / 3 cm = 2. For the second wedge, MA = 12 cm / 4 cm = 3. Therefore, the second wedge (12 cm long and 4 cm wide) has a greater mechanical advantage of 3 compared to the first wedge's MA of 2.
To determine the mechanical advantage of a wedge, you can use the formula: Mechanical Advantage (MA) = Length of the wedge / Width of the wedge. For the first wedge (6cm long, 3cm wide), MA = 6/3 = 2. For the second wedge (12cm long, 4cm wide), MA = 12/4 = 3. Therefore, the second wedge has a greater mechanical advantage of 3 compared to the first wedge's mechanical advantage of 2.
To calculate the mechanical advantage (MA) of an inclined plane, you can use the formula MA = L / H, where L is the length of the inclined plane and H is the height of the inclined plane. This formula is based on the principle that the force required to lift an object up the inclined plane is less than the force required to lift it vertically.
whereR = resistance forceEactual = actual effort force, the force required to turn the wheel.
The AMA (mechanical advantage) of the handle can be calculated using the formula AMA = Output force / Input force. In this case, it would be 44 Newtons divided by 20 Newtons, resulting in an AMA of 2.2. This means that the handle provides a mechanical advantage of 2.2, making it easier to open the door compared to applying the force directly.