answersLogoWhite

0

The right hand rule is a simple way to find out the direction of the field surrounding a current carrying conductor.

Point your right thumb in the direction of the current in the wire (which flows from high to lower voltages) and curl the other fingers as if around the wire; the curled fingers define the direction of the magnetic field generated.

Comment

It might be worth pointing out that the above answer applies for conventional flow, not electron flow.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Movies & Television

When does current carrying conductor placed in a magnetic field experiences a maximum force?

It experiences maximum force when it is placed perpendicular to the direction of magnetic field.


Explain what happens when a long straight conductor is moved through a uniform magnetic field at a constant velocity Assuming that the conductor moves perpendicularly to the field?

Interesting question. Because Fleming's right hand rule tells us that a conductor carrying a current perpedicular to a magnetic field will move in a particular direction we know that movement, current and magnetic field are related. So if we take the current away and instead force the conductor to move as described then we would observe a current in the wire. However, you have not said that your conductor is connected in a circuit - in which case the charge carriers in the conductor will tend to one side like a bar magnet.AnswerThe original answer is incorrect. A voltage would be induced into the conductor. No current would flow unless the conductor forms a continuous circuit.


What is the purpose of neutral contactor?

Presumably, you are asking the purpose of a neutral conductor, rather than 'contactor'?A alternating-current supply has two conductors, a lineconductor and a neutral conductor. The line conductor is at system potential (e.g. 230 V in Europe), whereas the neutral conductor is at approximately earth (ground) potential because it is earthed (grounded) at the supply transformer. The neutral conductor acts as the 'return' path to the transformer, carrying the same load current as the line conductor.


What are 3 factors which affect the magnitude of magnetic force on current-carrying conductors?

Electric current, magnetic field intensity, length of the conductor, angle between the electric current and magnetic field


What shape is magnetic field produced when current is passed through the wire?

it is called the thumb rule right hand curled means flux line thumb means direction of current. there will be a reversal of flux.

Related Questions

Is the right hand rule for protons or electrons used to determine the direction of the magnetic field created by a current-carrying conductor?

The right-hand rule is used to determine the direction of the magnetic field created by a current-carrying conductor.


How does the right hand rule work to determine the direction of a magnetic field around a current-carrying conductor?

The right-hand rule is a way to determine the direction of a magnetic field around a current-carrying conductor. Point your thumb in the direction of the current flow, and curl your fingers. The direction your fingers curl represents the direction of the magnetic field around the conductor.


What is the right hand rule and how is it used to determine the direction of a magnetic field around a current-carrying conductor?

The right-hand rule is a method used to determine the direction of a magnetic field around a current-carrying conductor. To use the rule, point your thumb in the direction of the current flow and curl your fingers. The direction your fingers curl represents the direction of the magnetic field around the conductor.


What is the right hand curl rule and how is it used to determine the direction of the magnetic field around a current-carrying conductor?

The right-hand curl rule is a method used to determine the direction of the magnetic field around a current-carrying conductor. To apply the rule, point your right thumb in the direction of the current flow. Then, curl your fingers around the conductor. The direction your fingers curl represents the direction of the magnetic field lines around the conductor.


What is the right hand rule in physics and how is it used to determine the direction of a magnetic field around a current-carrying conductor?

The right-hand rule in physics is a method used to determine the direction of a magnetic field around a current-carrying conductor. To apply the rule, point your right thumb in the direction of the current flow and curl your fingers. The direction in which your fingers curl represents the direction of the magnetic field around the conductor.


What is the purpose of the right hand rule diagram in understanding the direction of magnetic fields around a current-carrying conductor?

The purpose of the right hand rule diagram is to help visualize the direction of magnetic fields around a current-carrying conductor. By using your right hand and following the rule, you can determine the direction of the magnetic field based on the direction of the current flow in the conductor.


What is the left hand rule of electromagnetism and how is it used to determine the direction of the magnetic field created by a current-carrying conductor?

The left-hand rule of electromagnetism is a rule used to determine the direction of the magnetic field created by a current-carrying conductor. To use this rule, point your thumb in the direction of the current flow, your index finger in the direction of the magnetic field, and your middle finger will then point in the direction of the force acting on the conductor. This rule helps in understanding the relationship between current flow and magnetic fields.


What is the left hand rule for magnetism and how is it used to determine the direction of the magnetic field in a current-carrying conductor?

The left-hand rule for magnetism is a way to determine the direction of the magnetic field around a current-carrying conductor. To use this rule, point your thumb in the direction of the current flow (from positive to negative), your index finger in the direction of the magnetic field, and your middle finger will then point in the direction of the magnetic field lines. This rule helps to visualize and understand the relationship between current flow and magnetic fields in a conductor.


How rigt hand thumb rule is used in determining the direction of magnetic field around a conductor carrying current?

Curl the fingers of your right hand into the palm and extend the thumb. The thumb indicates the direction of the current, and the direction of the fingers indicates the direction of the magnetic field.


What is the purpose of Fleming's right hand rule?

Fleming's right hand rule is used to determine the direction of the magnetic force on a current-carrying conductor in a magnetic field. By aligning the thumb with the direction of current flow, the forefinger with the direction of the magnetic field, the middle finger points in the direction of the magnetic force acting on the conductor.


How is it used in determining the direction of the magnetic field around a conductor carrying current?

By using right hand rulee.. how?? let me explain.. first you should be knowing the direction of flow of current, then hold the current carrying conductor by your right hand in a way that your thumb points the direction of current flowing and curl your fingures around the conductor the manner your figures curl around condutor would determine the the magnetic field's direction that may be clockwise or anti-clockwise..thankkxx.


Why and when does a current carrying conductor kept in a magnetic field experiences a force list factor on which the direction of this force depend State the rule which may be used to determine the di?

Current carrying conductor will have magnetic lines around it. So when it is kept perpendicular to the magnetic field then the force would be maximum. The force depends on 1. magnitude of current 2. Magnetic field induction 3. Angle between the direction of current and magnetic field. Fleming's Left hand rule is used to find the direction of force acting on the rod