answersLogoWhite

0

What else can I help you with?

Related Questions

Why is there no electric field inside a conductor?

Inside a conductor, the electric charges are free to move and redistribute themselves to cancel out any external electric field. This results in no net electric field inside the conductor.


Does charge inside a conductor exert electric field on another charge placed outside the conductor?

Yes, the charges inside a conductor will rearrange when an external charge is placed near or on the surface of the conductor, resulting in an induced electric field inside the conductor. This induced electric field will influence the external charge's behavior without the need for direct contact between the charges.


Under electrostatic conditions, why is there no electric field inside a solid conductor?

Under electrostatic conditions, there is no electric field inside a solid conductor because the free electrons in the conductor redistribute themselves to cancel out any external electric field, resulting in a net electric field of zero inside the conductor.


Why is the electric field inside a conductor always zero?

The electric field inside a conductor is always zero because the free charges in the conductor rearrange themselves in such a way that they cancel out any external electric field that may be present. This redistribution of charges ensures that the electric field inside the conductor is zero, maintaining electrostatic equilibrium.


What is the distribution of the electric field inside a hollow conductor?

The electric field inside a hollow conductor is zero.


What is the principle of electrostatic shielding?

The method of protecting a region from the effect of electric field is called electrostatic shielding. The electric field inside the cavity of a conductor is zero. Therefore, any instrument or an appliance can be placed in the cavity of a conductor so that it may not be affected by the electric field.


Why should the Electric field inside a conductor zero?

The electric field inside a conductor is zero because any electric field that is present will cause the charges inside the conductor to move until they distribute themselves in such a way that cancels out the electric field. This redistribution of charges ensures that the net electric field inside the conductor is zero in equilibrium.


Why are eddys formed in a conductor in an external magnetic field?

Eddy currents are electric currents that are produced inside conductors, through the process of changing the magnetic field in the conductor. The external magnetic field is used as a barrier or skin to protect the eddy.


What is the electric field on the surface of the conductor?

The field is zero inside only if any charge is evenly distributed on the surface. That's a mathematical theorem, sorry I don't have the proof handy. But when you measure the electric field inside a charged sphere, the charge you use might be large enough to redistribute the surface charge. In this case the electric field will not be zero. Only if you measure at the centre.


What happens when an isolated conductor is statically charged?

When a conductor is statically charged, excess charge accumulates on its surface. This charge distribution creates an electric field within the conductor that repels like charges and attracts opposite charges. As a result, the charges redistribute themselves on the surface of the conductor until the electric field inside the conductor becomes zero.


What is the relationship between the electric potential inside a conductor and its properties?

The electric potential inside a conductor is constant and does not depend on the properties of the conductor. This is known as the electrostatic equilibrium condition. The properties of the conductor, such as its shape and material, only affect the distribution of charges on its surface, not the electric potential inside.


Why is electric potential inside a ring conductor on a conducting paper that has elctric field zero?

The electric potential inside a ring conductor on a conducting paper is zero because the electric field inside a conductor in electrostatic equilibrium is zero. This is due to the charges redistributing themselves in such a way that the electric field cancels out inside the conductor. Since the electric potential is directly related to the electric field, the potential inside the conductor is also zero.