answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: Why does the electric field inside a conductor becomes zero when it is placed in an external electric field?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Why are eddys formed in a conductor in an external magnetic field?

Eddy currents are electric currents that are produced inside conductors, through the process of changing the magnetic field in the conductor. The external magnetic field is used as a barrier or skin to protect the eddy.


Why does the electric field inside a dielectric decrease when it is placed in an external electric field?

The net electric field inside a dielectric decreases due to polarization. The external electric field polarizes the dielectric and an electric field is produced due to this polarization. This internal electric field will be opposite to the external electric field and therefore the net electric field inside the dielectric will be less.


If a conductor is placed in a uniform electric field does the conductor gain any charge?

The conductor will not gain any charge that is not placed on it by you. However, the electric field will displace the free charges already within the conductor (by its nature) such that there will be a non-uniform surface charge density. Remember: a conductor must have zero electric field inside it, so the charges rearrange to cancel the external E-field. Again, this only repositions the existing charge, but it does not add or remove any charge.


What is the size of the electric field inside any charged conductors?

Inside a conductor, it's zero.


When an electric field is applied to a conductor does the electric field develops within the conductor or around the conductor?

The electric field will develop inside the conductor, depending on the characteristics of the electric field -- in a steady state (DC) or in an alternating mode (AC). The higher the frequency of oscillation, the shallower the field will reside in the conductor -- skin depth (check the related link). Hence, when the frequency is high, only the few mm's of the outer skin participates in the action (AC electrical conduction.) In steady state (DC), the frequency is zero, the electric field is distributed inside the whole conductor.


The electrical intensity inside a charged hollow sphere is?

The electric FIELD inside a charged hollow CONDUCTOR is zero.


Can a person stay safely inside a spherical conductor charged to a very high voltage?

Yes. The static electric field inside a charged conductor is zero, no matter what the voltage is between the conductor and the rest of the world.


What are three facts about electric field lines?

1. Electric field lines of force originate from the positive charge and terminate at the negative charge. 2. Electric field lines of force can never intersect each other. 3. Electric field lines of force are not present inside the conductor, it is because electric field inside the conductor is always zero. 4. Electric field lines of force are always perpendicular to the surface of conductor. 5. Curved electric field lines are always non-uniform in nature.


How do you calculate the electric field inside a conductor?

A spherical conductor with a radius of 14.0 cm and charge of 26.0 microcoulombs. Calculate the electric field at (a)r=10.0cm and (b)r=20.0cm and (c)r=14.0 from the center.


What is the principle of electrostatic shielding?

The method of protecting a region from the effect of electric field is called electrostatic shielding. The electric field inside the cavity of a conductor is zero. Therefore, any instrument or an appliance can be placed in the cavity of a conductor so that it may not be affected by the electric field.


What is the opposite of a conductor?

The opposite of a conductor (conducts electric flow) is a non-conductor, or something that opposes the flow, which would be an insulator.


What is the properties of material that is durable and conductor of electricity?

There is no electric field inside a conductor.Otherwise, the charges in the conductor would move.Charges exist only on the surface of a conductor.Otherwise, there would be electric fields inside.All points of a conductor are at the same potential.Since DV=-EDx, since E=0, the potential must be constant.