the fertilization takes place inside the fem. body ..........(internal) the fertilization takes place outside the female body ...(external)
E = Eo/k k is dielectric constant
too hot, need to use bathroom, get an itch, can't move/bulky, too tight, snow inside
too hot, need to use bathroom, get an itch, can't move/bulky, too tight, snow inside
Yes. Stationary electric (electrostatic) fields will act on each other and a force will be developed. If you had a standing electric field and could "beam in" an electron (a la Star Trek), the electron would react at once and move either toward a positive field source or away from a negative field source. The electron would know the field was there the instant it appeared.
Inside a conductor, the electric charges are free to move and redistribute themselves to cancel out any external electric field. This results in no net electric field inside the conductor.
Yes, the charges inside a conductor will rearrange when an external charge is placed near or on the surface of the conductor, resulting in an induced electric field inside the conductor. This induced electric field will influence the external charge's behavior without the need for direct contact between the charges.
Under electrostatic conditions, there is no electric field inside a solid conductor because the free electrons in the conductor redistribute themselves to cancel out any external electric field, resulting in a net electric field of zero inside the conductor.
The electric field inside a conductor is always zero because the free charges in the conductor rearrange themselves in such a way that they cancel out any external electric field that may be present. This redistribution of charges ensures that the electric field inside the conductor is zero, maintaining electrostatic equilibrium.
The electric field inside a hollow conductor is zero.
The method of protecting a region from the effect of electric field is called electrostatic shielding. The electric field inside the cavity of a conductor is zero. Therefore, any instrument or an appliance can be placed in the cavity of a conductor so that it may not be affected by the electric field.
The electric field inside a conductor is zero because any electric field that is present will cause the charges inside the conductor to move until they distribute themselves in such a way that cancels out the electric field. This redistribution of charges ensures that the net electric field inside the conductor is zero in equilibrium.
Eddy currents are electric currents that are produced inside conductors, through the process of changing the magnetic field in the conductor. The external magnetic field is used as a barrier or skin to protect the eddy.
The field is zero inside only if any charge is evenly distributed on the surface. That's a mathematical theorem, sorry I don't have the proof handy. But when you measure the electric field inside a charged sphere, the charge you use might be large enough to redistribute the surface charge. In this case the electric field will not be zero. Only if you measure at the centre.
When a conductor is statically charged, excess charge accumulates on its surface. This charge distribution creates an electric field within the conductor that repels like charges and attracts opposite charges. As a result, the charges redistribute themselves on the surface of the conductor until the electric field inside the conductor becomes zero.
The electric potential inside a conductor is constant and does not depend on the properties of the conductor. This is known as the electrostatic equilibrium condition. The properties of the conductor, such as its shape and material, only affect the distribution of charges on its surface, not the electric potential inside.
The electric potential inside a ring conductor on a conducting paper is zero because the electric field inside a conductor in electrostatic equilibrium is zero. This is due to the charges redistributing themselves in such a way that the electric field cancels out inside the conductor. Since the electric potential is directly related to the electric field, the potential inside the conductor is also zero.