There is no minimum value for the coefficient of friction. And the linear acceleration will depend on its unknown value.
POMBO
The coefficient of kinetic friction can be calculated using the formula: coefficient of kinetic friction = force of kinetic friction / normal force. The force of kinetic friction can be found using the formula: force of kinetic friction = coefficient of kinetic friction * normal force. Given the force of 31N and normal force equal to the weight of the crate (mg), you can calculate the coefficient of kinetic friction.
To calculate the friction in a pulley, you can use the formula: Friction = µ * N, where µ is the coefficient of friction and N is the normal force acting on the pulley. The coefficient of friction represents how "rough" the surfaces in contact are. By multiplying the coefficient of friction with the normal force, you can determine the amount of friction in the pulley system.
The force of friction acting on the sack of rice is the product of the coefficient of friction and the normal force, which in this case is the weight of the sack (110 pounds). Therefore, the force of friction is 0.25 * 110 = 27.5 pounds. The horizontal force required to overcome this friction and drag the sack of rice is equal to the force of friction, so a force of 27.5 pounds (P = 27.5 pounds) is required.
Vertical acceleration is the rate of change of velocity moving up or down, while horizontal acceleration is the rate of change of velocity moving left or right. Vertical acceleration is affected by gravity, while horizontal acceleration is typically due to external forces like friction or thrust.
The horizontal friction coefficient can be calculated using the formula: μ = F_h / N, where μ is the friction coefficient, F_h is the horizontal friction force, and N is the normal force acting on the object. The horizontal friction force can be calculated as F_h = μ* N, where N is the normal force and μ is the friction coefficient.
POMBO
To find the acceleration of an object when given the coefficient of kinetic friction, you can use the formula: acceleration g (k), where g is the acceleration due to gravity (9.8 m/s2) and k is the coefficient of kinetic friction. This formula helps calculate how fast an object is speeding up or slowing down due to friction.
The acceleration of a body moving downward on an inclined plane with angle θ when friction is present can be expressed as: a = g(sinθ - μcosθ) where: a = acceleration of the body g = acceleration due to gravity θ = angle of the inclined plane μ = coefficient of friction
The coefficient of friction is the tangent of the angle theta where the angle is measured from horizontal when the mass first starts to slip
The coefficient of kinetic friction remains constant regardless of the area of contact between the block and the horizontal surface. It is a property of the materials in contact and does not depend on the surface area.
To determine the coefficient of friction, divide the force of friction by the normal force. The force of friction can be calculated by multiplying the coefficient of friction by the normal force. The normal force is equal to the mass multiplied by the acceleration due to gravity. By knowing the mass and applied force, one can calculate the coefficient of friction using these formulas.
(Static coefficient of friction) Cf = horizontal force (newtons) required to overcome static resistance / vertical force (newtons) due to objects mass * acceleration due to gravity. Note: Moving friction coefficient is generally less.
The coefficient of kinetic friction can be calculated using the formula: coefficient of kinetic friction = force of kinetic friction / normal force. The force of kinetic friction can be found using the formula: force of kinetic friction = coefficient of kinetic friction * normal force. Given the force of 31N and normal force equal to the weight of the crate (mg), you can calculate the coefficient of kinetic friction.
The greatest acceleration a runner can generate is limited by the static friction force, which is given by the product of the coefficient of static friction and the normal force. If the coefficient of static friction is 0.95, then the maximum acceleration would be 0.95 times the acceleration due to gravity (9.81 m/s^2), which equals 9.31 m/s^2.
if the static coefficient of friction mew between the tires and the ground is 0.55, then the maximum acceleration of the car will be 0.55g with assumption that there is enough engine power. 0.55g is about 5.4 m/s/s.
No, the coefficient of static friction is typically greater than the coefficient of kinetic friction.