answersLogoWhite

0

The sodium influx necessary for depolarization will occur more slowly making the action potential difficult to generate.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Natural Sciences

How does a neurotransmitter cause an action potential in a receiving neuron?

A neurotransmitter binds to specific receptors on the postsynaptic membrane of a receiving neuron, leading to the opening of ion channels. This causes an influx of positively charged ions, such as sodium (Na+), which depolarizes the membrane. If the depolarization reaches a certain threshold, it triggers an action potential by opening voltage-gated sodium channels, allowing further sodium influx and propagating the electrical signal along the neuron.


Neurotransmitters that bind the postsynaptic membrane generally generate a what?

Neurotransmitters that bind to the postsynaptic membrane generally generate a postsynaptic potential, which can be either excitatory (EPSP) or inhibitory (IPSP). EPSPs increase the likelihood of an action potential occurring in the postsynaptic neuron, while IPSPs decrease that likelihood. These potentials result from the opening or closing of ion channels, leading to changes in the membrane potential of the postsynaptic cell.


What sequence of events occurs when an action potential arrives at the presynaptic terminal?

When an action potential arrives at the presynaptic terminal, voltage-gated calcium channels open, allowing calcium ions to enter the cell. The influx of calcium triggers the release of neurotransmitter vesicles from the presynaptic terminal into the synaptic cleft. These neurotransmitters then bind to receptors on the postsynaptic membrane, leading to changes in the postsynaptic cell's membrane potential.


What does the neurotransmitter bind to after it moves across the synaptic cleft?

The neurotransmitter binds to specific receptors on the postsynaptic neuron's membrane. This binding triggers a series of events that can either excite or inhibit the postsynaptic neuron, ultimately influencing its activity.


When a neurotransmitter is released from a presynaptic neuron the neurotransmitter may?

When a neurotransmitter is released from a presynaptic neuron, it diffuses across the synaptic cleft and binds to specific receptors on the postsynaptic neuron. This binding can lead to the opening of ion channels, resulting in changes to the postsynaptic cell's membrane potential, which may generate an excitatory or inhibitory signal. Additionally, neurotransmitters can also activate intracellular signaling pathways or be taken back up by the presynaptic neuron for recycling. Ultimately, the release of neurotransmitters plays a crucial role in neuronal communication and the overall functioning of the nervous system.

Related Questions

How long does an excitatory postsynaptic potential lasts?

An excitatory postsynaptic potential (EPSP) typically lasts for a few milliseconds, ranging from about 10 milliseconds to a maximum of around 50 milliseconds. The duration of an EPSP can vary depending on factors such as the specific neurotransmitter involved, the properties of the receptor, and the activity of ion channels in the postsynaptic neuron.


How does synaptic transmission take place?

The synaptic transmission is where the communication between the terminal button and the dendrite occur. What happens is the impulse moves along the axon and release neurotransmitter from the end plate of the presynaptic neuron and are diffused across the synaptic cleft. This creates a depolarization of the dendrites of the postsynaptic neuron. When that happens the postsynaptic's sodium channels to open and start the action potential. Once the channels are open an enzyme called cholinesterase is released from postsynaptic membrane and it acts to destroy the neurotransmitters. When they are destroyed the sodium channels close and begins recovery.


Which membrane potential occurs because of the influx of Na plus through chemically gated channels in the receptive region of a neuron?

The membrane potential that occurs due to the influx of Na+ through chemically gated channels in the receptive region of a neuron is called the excitatory postsynaptic potential (EPSP). This influx of Na+ leads to depolarization of the neuron, bringing it closer to the threshold for generating an action potential. EPSPs can summate to trigger an action potential if they reach the threshold potential.


What is the process of a neurotransmitter being absorbed into the axon terminal?

When an action potential reaches the axon terminal, it triggers the opening of voltage-gated calcium channels. Calcium ions enter the axon terminal, leading to the fusion of neurotransmitter-containing vesicles with the synaptic membrane. The neurotransmitter is then released into the synaptic cleft where it can bind to receptors on the postsynaptic neuron.


How does a neurotransmitter cause an action potential in a receiving neuron?

A neurotransmitter binds to specific receptors on the postsynaptic membrane of a receiving neuron, leading to the opening of ion channels. This causes an influx of positively charged ions, such as sodium (Na+), which depolarizes the membrane. If the depolarization reaches a certain threshold, it triggers an action potential by opening voltage-gated sodium channels, allowing further sodium influx and propagating the electrical signal along the neuron.


Neurotransmitters that bind the postsynaptic membrane generally generate a what?

Neurotransmitters that bind to the postsynaptic membrane generally generate a postsynaptic potential, which can be either excitatory (EPSP) or inhibitory (IPSP). EPSPs increase the likelihood of an action potential occurring in the postsynaptic neuron, while IPSPs decrease that likelihood. These potentials result from the opening or closing of ion channels, leading to changes in the membrane potential of the postsynaptic cell.


Series of events from the time the action potential reaches the persynaptic terminal to the activation of the postsynaptic receptor?

After the action potential reaches the presynaptic terminal, voltage-gated calcium channels open, leading to an influx of calcium ions. This triggers the release of neurotransmitters into the synaptic cleft. These neurotransmitters then bind to receptors on the postsynaptic membrane, leading to depolarization and the generation of a new action potential in the postsynaptic neuron.


What sequence of events occurs when an action potential arrives at the presynaptic terminal?

When an action potential arrives at the presynaptic terminal, voltage-gated calcium channels open, allowing calcium ions to enter the cell. The influx of calcium triggers the release of neurotransmitter vesicles from the presynaptic terminal into the synaptic cleft. These neurotransmitters then bind to receptors on the postsynaptic membrane, leading to changes in the postsynaptic cell's membrane potential.


What does the neurotransmitter bind to after it moves across the synaptic cleft?

The neurotransmitter binds to specific receptors on the postsynaptic neuron's membrane. This binding triggers a series of events that can either excite or inhibit the postsynaptic neuron, ultimately influencing its activity.


Binding of neurotransmitter to the receptors on the motor endplate open?

When a neurotransmitter binds to its receptor on the motor endplate, it triggers the opening of ion channels in the postsynaptic membrane. This allows for the influx of ions, typically leading to depolarization of the muscle cell membrane and initiation of a muscle action potential. Subsequently, this leads to contraction of the muscle fiber.


When a neurotransmitter is released from a presynaptic neuron the neurotransmitter may?

When a neurotransmitter is released from a presynaptic neuron, it diffuses across the synaptic cleft and binds to specific receptors on the postsynaptic neuron. This binding can lead to the opening of ion channels, resulting in changes to the postsynaptic cell's membrane potential, which may generate an excitatory or inhibitory signal. Additionally, neurotransmitters can also activate intracellular signaling pathways or be taken back up by the presynaptic neuron for recycling. Ultimately, the release of neurotransmitters plays a crucial role in neuronal communication and the overall functioning of the nervous system.


What is depolarization of a neurotransmitter?

Depolarization of a neurotransmitter refers to the shift in the electrical charge of the neuron, making it more likely to generate an action potential. This can occur when a neurotransmitter binds to its receptor on the postsynaptic membrane, causing ion channels to open and allowing the influx of positively charged ions. This depolarization triggers a series of events that lead to the transmission of the nerve signal.