Depolarization stimulates the release of the neuro-transmitter from the terminal end of the neuron.
well check out papuyaar.com it should help
Calcium (Ca2+) channels open on the synaptic end bulb in response to depolarization (from the action potential), inducing exocytosis of synaptosomes containing neurotransmitter, resulting in neurotransmitter being released into the synaptic cleft...further propagating the signal to the next neuron or set of neurons.
Depolarization at the motor end plate upon arrival of action potentials triggers the release of neurotransmitter acetylcholine into the synaptic cleft. This acetylcholine then binds to receptors on the muscle cell membrane, initiating muscle contraction by depolarizing the muscle cell membrane and allowing the action potential to propagate along the muscle fiber.
A neurotransmitter is a chemical or peptide in synapses, usually between neurons, a neuron and muscle or a neuron and other organ. The neurotransmitter transmits information to and from and within the brain. When a neurotransmitter is released from the presynaptic cell in response to depolarization of the cell by an action potential, it diffuses across the synaptic cleft and binds a receptor or ligand-gated ion channel on the postsynaptic cell. Binding on the postsynaptic cell alters the resting potential of the postsynaptic cell in either an inhibitory or excitatory manner, making the cell less susceptible or more susceptible (respectively) to an action potential. Examples include, but are not limited to, acetylcholine, GABA, noradrenaline, serotonin and dopamine.
NA plus channels open in response to a change in the membrane potential, causing the channel to undergo conformational changes that lead to its opening. This change in membrane potential can be initiated by various stimuli, such as neurotransmitter binding or depolarization of the cell.
The combining of the neurotransmitter with the muscle membrane receptors causes the membrane to become permeable to sodium ions and depolarization of the membrane. This depolarization triggers an action potential that leads to muscle contraction.
Glutamate is the primary excitatory neurotransmitter in the central nervous system. It enhances the transmission of signals between neurons by promoting the depolarization of postsynaptic neurons.
well check out papuyaar.com it should help
Calcium (Ca2+) channels open on the synaptic end bulb in response to depolarization (from the action potential), inducing exocytosis of synaptosomes containing neurotransmitter, resulting in neurotransmitter being released into the synaptic cleft...further propagating the signal to the next neuron or set of neurons.
EPSP stands for excitatory postsynaptic potential. It is a temporary depolarization of postsynaptic membrane potential caused by the flow of positively charged ions into the neuron, usually due to the binding of neurotransmitters to their receptors. EPSPs can help to trigger an action potential in the neuron.
Depolarization in a hair cell is triggered by mechanical stimulation, such as sound waves or movement, while depolarization in a typical neuron is triggered by chemical signals.
Depolarization at the motor end plate upon arrival of action potentials triggers the release of neurotransmitter acetylcholine into the synaptic cleft. This acetylcholine then binds to receptors on the muscle cell membrane, initiating muscle contraction by depolarizing the muscle cell membrane and allowing the action potential to propagate along the muscle fiber.
When a neurotransmitter binds to its receptor on the motor endplate, it triggers the opening of ion channels in the postsynaptic membrane. This allows for the influx of ions, typically leading to depolarization of the muscle cell membrane and initiation of a muscle action potential. Subsequently, this leads to contraction of the muscle fiber.
A neurotransmitter is a chemical or peptide in synapses, usually between neurons, a neuron and muscle or a neuron and other organ. The neurotransmitter transmits information to and from and within the brain. When a neurotransmitter is released from the presynaptic cell in response to depolarization of the cell by an action potential, it diffuses across the synaptic cleft and binds a receptor or ligand-gated ion channel on the postsynaptic cell. Binding on the postsynaptic cell alters the resting potential of the postsynaptic cell in either an inhibitory or excitatory manner, making the cell less susceptible or more susceptible (respectively) to an action potential. Examples include, but are not limited to, acetylcholine, GABA, noradrenaline, serotonin and dopamine.
NA plus channels open in response to a change in the membrane potential, causing the channel to undergo conformational changes that lead to its opening. This change in membrane potential can be initiated by various stimuli, such as neurotransmitter binding or depolarization of the cell.
No, depolarization is not the resting state of the P wave. Depolarization is the process where the heart muscle contracts in response to an electrical signal. The P wave represents atrial depolarization, the electrical activity that triggers the contraction of the atria in the heart.
neurotransmitter